Xreferat.com » Рефераты по химии » Густой дым как поток продуктов горения

Густой дым как поток продуктов горения

К тому же, с понижением температуры воды, падает и способность диссоциации молекул. Таким образом, может быть существенно снижена растворимость компонентов, растворимых в кислотах и других соединениях. Понижение температуры жидкости способствует конденсации паров, находящихся в пузырьке. Это означает большую степень очистки растворимых жидкостей, но меньшую от газов, так как энергия их молекул и коэффициент диффузии падают при уменьшении температуры.

Ранее рассматривались случаи, когда пузырек поднимается вертикально, отделившись от поверхности трубки. И именно высота столба воды считалась путем, пройденным пузырьком, которая и подставлялось во все формулы. Однако, увеличение водяного столба приводит к увеличению давления, что не всегда желательно. Большее давление подразумевает увеличение плотности воздуха в пузырьках, а так же требует более высокой мощности устройства. Как уже отмечалось выше, давление внутри пузырька можно снизить, откачивая газ над поверхностью, то есть, разряжая его и уменьшая давление, оказываемое на жидкость сверху. Есть возможность увеличить путь пузырька не увеличивая давление, – просто заставить пузырек подниматься вдоль наклонной плоскости. Однако в этом случае на скорость подъема влияет сила трения. То есть, двигаться вдоль направляющей плоскости пузырек будет лишь по достижении определенного диаметра. При этом, для начала движения требуется тем больший диаметр пузырька, чем больше угол отличается от 90 є. Кроме того, за счет соприкосновения с плоскостью, частично уменьшается поверхность раздела между водой и газом, изменяется характер перемешивания слоев. В ряде случаев могут образовываться пузырьковые «пробки», приводящие к слиянию пузырьков. Так же проблемой является образование пузырьков изначально растворенных в воде газов, в частности чистого воздуха, на стенках сосуда. Слияние фильтруемого пузыря с обычным приводит к увеличению диаметра и разбавлению примесей. А как было сказано выше, эффективность очистки тем эффективнее, чем больше концентрация примесей. Самый значительный рост пузырька происходит при его подъеме по трубке, загнутой в спираль. В этом случае пузырек не только испытывает силу трения при контакте с поверхностью трубки, но и вынужден изменять направление в горизонтальной плоскости, при этом сильно возрастает сопротивление движению за счет вязкости воды.


5.3 Взаимная растворимость компонентов


Следует отметить, что прогнозирование растворимости тех или иных компонентов дыма в воде ограничивается сложностью протекающих процессов взаимодействия всех веществ, которые уже в ней растворены. Так, кислотные оксиды при попадании в воду подвергаются гидратации и последующей диссоциации. В результате, кислотный остаток и ион водорода находятся в определенном равновесии. Растворение же аммиака в воде приводит к образованию гидроксида аммония («нашатырного спирта»). Как и всякий гидроксид, он взаимодействует с растворами кислот, образуя соли аммония. Однако, все соли аммония так же хорошо растворимы в воде, поэтому тут же диссоциируют, не приводя к какому-либо изменению химического состава. В обычных условиях гидроксид аммония легко разлагается на аммиак и воду. Но в этом случае, кислотные остатки, способствуют накоплению и удерживанию иона аммония в жидкости.

Растворимость твердого вещества в воде всегда ограничена и редко превышает 50% по массе. Многие твердые вещества органического происхождения лишь на сотые доли процента растворимы даже в горячей воде. Растворимость жидких при комнатной температуре веществ (спирты, альдегиды, карбоновые кислоты) обычно определяется смешиваемостью. Для растворения одной жидкости в другой обычно требуется, чтобы их вязкости были примерно одинаковы. Сильно различающиеся по вязкости жидкости обычно плавают одна поверх другой, хотя возможно частичное взаимопроникновение. Жидкости с примерно одинаковой вязкостью фактически неограниченно растворимы друг в друге. В данном случае не идет речи о диссоциации этих жидкостей друг в друге, так как она связана с диэлектрической проницаемостью обоих веществ. Обычно, вязкость связана с молекулярной массой вещества. В частности, для углеводородов вязкость связана с количеством звеньев в цепи и конфигурацией молекул изомеров. Однако, многие нерастворимые в воде вещества растворимы в спиртах, кислотах и других потенциальных растворителях. Поэтому присутствие в воде кислот, спиртов и т.д. обычно способствует растворению некоторых нерастворимых в чистой воде веществ. Обычно, в водном дистилляте продуктов горения присутствуют фактически все классы органических веществ.

Так, древесный дым содержит не менее 100 относительно концентрированных компонентов, сочетая в себе альдегиды, карбоновые и аминокислоты, ароматические углеводороды, кетоны и т.д. Взаимная растворимость всех этих компонентов трудно определима. Тем не менее, есть 2 производственных процесса, проливающих свет на взаимную растворимость компонентов дыма. Это – пиролиз (сухая возгонка) – разложение без доступа кислорода древесины, и производство коптильных препаратов на основе дыма.

Так, коптильный ароматизатор «Жидкий дым», получаемый методом водной абсорбции продуктов горения, представляет собой прозрачную жидкость от светло-желтого до светло-коричневого цвета в зависимости от концентрации и характеризуется следующим составом:

– кислоты 1–40 г./кг

– фенолы 2–10 г./кг,

– карбонильные соединения 4,5–30,0 Моль/100 л,

– метанол 3 г/кг;

содержание токсичных элементов, не более:

– свинец – 1х10-3 г/кг,

– мышьяк – 0,2х10-3 г/кг,

– кадмий – 0,1х10-3 г/кг,

– ртуть – 0,1х10-3 г/кг,

– бенз(а) пирен – не более 5х10-8 г/кг.

Коптильные препараты получают при горении древесины, то есть, большая часть компонентов окисляется до оксидов углерода, и лишь некоторая доля проходит через воду. Как видно из приведенных данных, данный коптильный препарат не является насыщенным, то есть, можно считать, что концентрация одних компонентов не влияет на растворимость других. Следовательно, растворимость примерно иллюстрирует средний составы проходящего через воду дыма.

При пиролизе же (возгонка без доступа кислорода) ситуация несколько иная. Вещество подвергается термическому разложению окисляясь лишь за счет кислорода, присутствующего в самом веществе. При этом происходит образование воды, которая до предела насыщается растворимыми в ней веществами. Следовательно, данный материал гораздо полнее отражает процессы фильтрации водой дымовых потоков, чем кальян и копчение.

В процессе пиролиза получают компоненты в 3 состояниях: 24–25% древесного угля, 50–55% жидких и 22–23% газообразных продуктов.


Уголь 24 – 25%

Жижка 50 – 55%

Растворимость чистых веществ в воде

Газы 22 – 23%


вода 67 – 81%

100%

СО2 (по объему) 43 – 46%

Оставшаяся

смола 7 – 10%


СО 29 – 33%

пористая

растворимая древесная смола 4,5 – 14%


Н2 1,9 – 2,3%

твердая

уксусная кислота и ее гомологи 6 -9%

неограниченно

Непредельные углеводороды 2,2 – 3,7%

фаза

метанол 2,5 – 4,5%

неограниченно

Предельные углеводороды 17 – 22%


соединений разных классов (альдегидов, кетонов, сложных эфиров и т.д.) 5 – 6%




В данной таблице приведены весьма общие сведения по наиболее часто встречающимся группам компонентов. По всей видимости, растворимость продуктов при пиролизе является наиболее близкой к предельной, и наилучшим способом раскрывает протекающие при фильтрации через воду процессы. Жидкий дистиллят (жижка), при отстаивании разделяется на два слоя: верхний водный слой, называемый подсмольной водой, и смоляной слой, называемый отстойной, или осадочной смолой. Подсмольная вода, или отстоявшаяся жижка, содержит водорастворимые продукты разложения древесины. В составе этой жижки найдены разнообразные органические соединения, в том числе различные кислоты жирного ряда (муравьиная, уксусная, пропионовая, масляная, валериановая и др.), спирты (главным образом метиловый), сложные эфиры (метилацетат, этилацетат и др.), – кетоны (ацетон, метилэтилкетон), альдегиды (муравьиный, уксусный, фурфурол и др.). В отстоявшейся жижке содержатся также нелетучие смолистые вещества, называемые растворимой смолой. При перегонке отстоявшейся жижки эти вещества дают смолистый остаток, поэтому их называют также кубовой смолой.

Растворимая смола, согласно данным Д.В. Тищенко и других исследователей, имеет углеводное происхождение. В ее состав входят в основном вещества углеводного характера и сахара, а также продукты конденсации фенола с альдегидами и некоторые вещества отстойной смолы, которые становятся растворимыми в воде благодаря присутствию уксусной кислоты, метанола и ацетона. Состав этой растворимой смолы значительно колеблется и зависит от породы древесины.

Отстойная смола состоит из летучих продуктов термического разложения древесины, не растворимых в водном дистилляте. Эти вещества при отстаивании жижки собираются в виде смоляного слоя. Частично смола содержит и нелетучие вещества, которые в виде мельчайших капель уносятся с дистиллятом.


5.4 Конденсация разбызгивающихся капель


Стоит заметить, что при использовании метода фильтрования газа через воду имеет место разбрызгивание. При этом в уже отфильтрованный воздух попадают мелкие капельки водного раствора, примерно идентичного по составу фильтрующей жидкости. Таким образом, помимо увлажнения очищаемого воздуха, в него попадают ядовитые мелкодисперсные частицы раствора, токсичность которого невозможно снизить не конденсировав его. Один из элементарных способов поглощения избыточной влажности воздуха – сбор его на поверхность ткани, например, марли. Для этого, в выходной патрубок достаточно установить кусок губки. Это приведет к некоторому повышению давления над водой фильтра, а следовательно, всплывающие с глубины воды пузырьки будут мельче, что означает лучшую фильтрацию. Губчатая поверхность будет поглощать некоторую часть капелек раствора и паров воды. Важной особенностью губчатого поглотителя является то, что способность поглощать капли и «приклеивать» мелкие частицы растет с повышением степени увлажненности волокон. Однако накопление конденсированного раствора на губчатой поверхности предаст ей устойчивый дымный запах.

Есть более удобный способ снизить токсичность мелкодисперсной взвеси, позволяющий сохранить эффект увлажнения после фильтрации водной адсорбцией. А именно: выходной патрубок фильтра присоединить к трубе, поперечное сечение которой перекрывает расположенная под определенным углом марлевая проницаемая перегородка. Один конец марлевой ткани выходит в верхнее отверстие, проделанное в корпусе трубы, другой – в нижний. Верхний конец марли опущен в сосуд с чистой водой, нижний – в сосуд собирающий воду. Суть заключается в следующем: вода из верхнего сосуда будет транспортироваться по волокнам, пройдет через фрагмент марли, расположенный в трубе и оттуда будет стекать в нижний. Марля будет постоянно увлажняться. Проходя через увлажняемую марлю, поток из фильтра будет отчищаться от избыточной влаги и различных взвесей, но при этом тут же насыщаться парами чистой воды. Загрязненная вода будет стекать в нижний сосуд, а на смену ей из верхнего сосуда по волокнам будет опускаться свежая вода. Таким образом происходит процесс сбора взвесей на влажную марлю и одновременно попутная «стирка» этой же марли.

К несчастью, фильтрование дымов через влажную марлю фактически не приводит к результатам. Максимум, чего можно добиться таким образом – снижение количества примесей примерно на 5%.

Казалось бы, это противоречит одной из рекомендаций, по спасению от удушья при пожаре. Ведь в случаях пожаров, чтобы не задохнуться от дыма, рекомендуется дышать через сложенный в несколько слоев и предварительно увлажненный носовой платок. Во-первых, ткань платка более плотная, во вторых, сложенная раз в 8 влажная марля так же способна защищать от дыма, пока его компоненты не пройдут насквозь. В-третьих, платок мы плотно прижимаем пальцами к носу, в то время как в трубу при установке автоматически увлажняемой ткани особой герметичности добиться сложно. В-четвертых, задержке дымов при пожаре способствует еще и некоторая методика дыхания. Дыхание должно быть по возможности ровнее и спокойнее, так как малая скорость воздушного потока, проходящего через марлю, так же снижает скорость проникновения вредных примесей сквозь волокна и слои платка. В-пятых, платок используется только до того момента, пока человек не выберется из зоны задымления. А при установке на фильтр, платок будет «коптиться» круглые сутки. К тому же даже те, кто использует влажный платок, чтобы выбраться из задымленной зоны иногда теряют сознание из-за нехватки кислорода и отравляющего действия токсичных компонентов дыма. Так что влажный платок или увлажненная марля далеко не панацея, спасающая от отравляющих веществ.

Сжигание и нарушение круговорота

Огонь – один из старейших способов уничтожения. Органические и неорганические соединения, щелочи и фактически любой мусор (при определенных условиях даже металлы) может уничтожить физически огонь. Поэтому, если нет возможности уничтожить мусор иными способами, прибегают именно к сожжению. От газов и жидкостей после горения остаются только скопления дыма, иногда и сажи. От твердых тел – еще и угли да зола. Объемы и масса залы в десятки раз меньше, чем были объем и масса сгоревших бревен. Поэтому, уничтожение огнем – простой, быстрый и эффективный способ отчистить территорию. Тепло, выделяющееся при горении можно использовать для разогрева каких-либо вещей или получения механической, а в последствии – и электрической энергий. Но на сколько невосполнимый урон наносит биосфере такой огонь?

В природе фактически любой материал восполняется посредством круговорота. А избыток любого природного материала быстро распределяется по площади с помощью потоков воздуха и воды. А иногда и силами животного мира. Сколько было создано этими силами? Как минимум почвенный слой, атмосфера. Всего две составляющих, благодаря которым существует наш мир. «Простейшая утилизация» – сожжение, – выводит часть уже готовых веществ из более простой системы оборота в более сложную. К примеру, как далеко не шагнула наука, а синтез бумаги из простейших углеводородов не распространен уже потому, что обрабатывать древесину и превращать ее в бумагу – гораздо проще. Стало быть, дабы сохранить природу и окружающий мир, восполнять недостаток бумаги нужно с помощью переработки бумажных отходов. Потери такой переработки составляют десятые процента, а затраты на переработку даже меньше, чем на ее производство из древесины. Значительная часть новой информации переправляется электронной почтой, что в несколько снижает необходимость расхода бумаги. Поэтому переработка могла бы способствовать сохранению ресурсов всего мира, а следовательно – сыграла бы роль в деле сохранения экологии уже сегодня.


Список использованных источников


1) Химия древесины и целлюлозы – Никитин В.М., Оболенская А.В., Щеголев В.П – 1978).

2) Энциклопедический Словарь Юного Химика, составители Крицман В.А. и Станцо В.В., главный редактор Прокофьев М.А., М – «Педагогика», 1982, 368 с., ил.

3) Краткий справочник по химии, И.Т. Гороновский, Ю.П. Назаренко, Е.Ф. Некряч, под редакцией члена-корреспондента АН УССР, О.Д. Куриленко, – Киев, издательство Наукова думка, 1974, – 994 с.

4) Верховский В.Н. Техника и методика химического эксперимента в школе, пособие для преподавателей и студентов педагогических вузов, Т 1, издание 5, Москва, УЧПЕДГИЗ, 1953 г., 556 стр., ил.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: