Xreferat.com » Рефераты по химии » Проект реконструкции цеха первичной переработки нефти и получения битума на ОАО «Сургутнефтегаз»

Проект реконструкции цеха первичной переработки нефти и получения битума на ОАО «Сургутнефтегаз»

узкую фракцию в соответствии с ее молекуляр­ной массой приравниваем (ус­ловно) к индивидуальному уг­леводороду (алкану) и находим при нескольких температурах (в нашем случае при 260, 300 и 340 °С) по диаграмме Кокса для каждой фракции (прирав­ненной к индивидуальному уг­леводороду) упругость Pi насыщенных паров. Вычисляем произ­ведения , выражающие парциальное давление паров каждой фракции, и по уравнению изотермы жидкой фазы находим для каждой из выбранных температур упругость паров сырья, т. е. давление, при котором сырье закипит при данной температуре.

Все эти определения и расчеты сведены в табл. 24.

По данным этой таблицы построена кривая Р = f(tн.о.и.) упру­гости паров нефти (рис. 43).

Предварительно задаемся давлением в начале участка испаре­ния н = 1,9 am и по кривой (см. рис. 43) находим температуру на­чала однократного испарения (закипания) отбензиненной нефти, соответствующую этому давлению, tн = 307 °С. Эта температура выше той, с которой нефть входит в радиантные трубы ( tкн = 260 °С). Это значит, что испарение нефти начинается в радиантной секции.

Найдем эквивалентную (расчетную) длину радиантных труб для одного потока нефти:

где = 4 м — полная длина трубы; Nр1 = 15 — число радиантных труб в одном потоке; = 50 — коэффициент, зависящий от вида соединения труб [39, стр. 131]; dв = 0,lll м внутренний диаметр радиантных труб.


Таблица 24

Пределы кипения фракции, °С

tср., °С

Мi

xi,

маc.%



260°С

300 °С

340 °С

Pi,

мм. рт. ст.

,

мм. рт. ст.

Pi,

мм. рт. ст.

,

мм. рт. ст.

Pi,

мм. рт. ст.

,

мм. рт. ст.

180-250 215 171 10,69 0,063 0,210 2000,0 420,0 5000 1050,0 9000 1890,0
250-300 275 218 9,56 0,044 0,147 550,0 80,9 1500 220,5 3750 551,3
300-345 325 263 7,90 0,030 0,100 200,0 20,0 650 65,0 1700 170,0
345-437 390 329 16,4 0,050 0,167 30,0 5,0 125 20,9 800 133,6
437-462 440 386 6,22 0,016 0,053 4,5 0,2 20 1,1 175 9,3
462-500 475 428 9,45 0,022 0,073 0 0 7 0,5 60 4,4
более 500 550 528 39,78 0,075 0,250 0 0 0 0 7 1,8

Итого:



100 0,3 1

526,10,72 ат


1358

1,85 ат


2760

3,76 ат


Тогда

Рассчитаем эквивалентную длину участка испарения по урав­нению:

где — теплосодержание нефти на выходе из печи; = 170,5 ккал/кг — теплосодержание сырья в начале участка испарения при tн = 307 °С; = 132 ккал/кг — теплосодержание сырья на входе в радиантные трубы.


Тогда

Определим давление в начале участка испарения по формуле Б. Д. Бакланова:

где к = 1,8 ат = 1,8104 кГ/м2 — давление сырья на выходе иа змеевика печи или, что то же самое, в конце участка испаре­ния; А и В—расчетные коэффициенты.


Коэффициент А находим по формуле [47, стр. 202]:

где — коэффициент гидравлического сопротивления, равный для атмосферных печей 0,020—0,024, принимаем = 0,024; L1 — секундный расход сырья по одному потоку, кг/сек; ж = 753 кг/м3плотность нефти при средней температуре на участке испарения tср. = 0,5(307+350)=329 °С.


Тогда

Коэффициент В находим по формуле [47, стр. 203]:

где е = 0,435—массовая доля отгона сырья на выходе из печи; — средняя плотность паров сырья при давлении 1 кГ/м2 в кг/м3 (принимается).


После подстановки числовых значений в формулу получим:

Давление в начале участка испарения равно:

Полученное значение н достаточно близко к ранее принятому, поэтому пересчета не делаем. Вычисляем потерю напора на участке испарения:

Потери напора Рн на участке нагрева радиантных труб найдем по формуле:

где = 0,031 — коэффициент гидравлического сопротивления, вы­бирается по таблице [35, стр. 419]; lн — эквивалентная длина участка нагрева радиантных труб по одному потоку, м; dв = 0,111 м — внутренний диаметр радиантных труб; и — массовая скорость сырья в трубах, кг/(м2сек); 9,81 — безразмерный коэффициент перевода ньютонов в ки­лограммы; ж плотность сырья при средней тем­пературе на участке нагрева радиантных труб.


Эквивалентная длина участка нагрева радиантных труб:

Массовая скорость сырья в трубах (одного потока):

Подставляя в формулу для Рн числовые значения величин для нефти и мазута, получим:

Потери напора в конвекционном змеевике (по одному потоку) найдем по формуле:

где = 0,031 (см. выше); lк — эквивалентная (расчетная) длина конвекционного змеевика по одному потоку, м; dв = 0,09 м — внутренний диаметр конвекционных труб; uк — массовая скорость сырья в конвекционных трубах, кг/(м2сек); ж плотность сырья при средней температуре в кон­векционных трубах.



Эквивалентная длина конвекционного змеевика по одному потоку:

где — число труб в одном потоке; lтр. = 4 м — полная длина трубы; = 50 [см. выше].


Тогда для нефти и мазута

Массовая скорость:

Подставляя в формулу для Рк числовые значения величин, получаем:

Определяем статистический напор, необходимый для подъема отбензиненной нефти и мазута в змеевике от уровня ввода в конвек­ционный змеевик до уровня вывода из радиантных труб:

где ж — удельный вес сырья при tср..


Таким образом, давление сырья на входе в змеевик печи будет:

4.10.Расчет потерь напора в газовом тракте печи

Общие потери напора по газовому тракту печи, или величина тяги в дымовой трубе, рассчитываются по формуле:

где Рр — величина разрежения в камере радиации, принимаем Рр = 2 мм вод. ст.; Рк — потери напора в камере конвекции, мм вод. ст.; Рб — потери напора в борове, мм вод. ст.; Ртр. —потери напора в дымовой трубе, мм вод. ст.


Потери напора в камере конвекции Рк найдем по формуле:

где Рп — потери напора в конвекционном пучке труб, мм вод. ст.; Рст. — статический напор в камере конвекции при нисходящем потоке газов, мм вод. ст.


Потери напора в конвекционном пучке труб определяем по формуле В. М. Антуфьева и Л. С. Казаченко [39, стр. 1391.

где — коэффициент, берется по таблице [35, стр. 396.], в нашем случае при C1 = l,5; — коэффициент, берется по графику [35, стр. 396], в нашем случае при С2 = 0,88; m = 8 — число горизонтальных рядов труб в конвекционном пучке; Re — критерий Рейнольдса; и = 0,37 кг/(м2ceк) — массовая скорость газов в узком сечении пучка (найдена ранее); к — плотность дымовых газов при их средней темпера­туре в конвекционной камере, кг/м3.


Определим среднюю температуру газов в конвекционной ка­мере:

Значение критерия Рейнольдса подсчитаем по формуле:

где = 9710-6 м2/сек — кинематическая вязкость дымовых газов tср. = 550 °С — по таблице [35, стр. 358].


Определим величину к по формуле:

где Т0 = 273 К; 0 = 1,24 кг/м3 — плотность дымовых газов при 0 С и 760 мм рт. ст., рассчитанная выше; Тcp. = 600+273 = 873 °К — средняя абсолютная температура ды­мовых газов.


Тогда


Подсчитаем Рп:

Рекомендуется найденную величину увеличить на 40 %, по­этому примем

Статический напор в камере конвекции при нисходящем потоке газов найдем так:

где hк = 1,036+0,53 = 1,566 м высота камеры конвекции (см. рис. 41); возд. и к — удельный вес воздуха при температуре окружаю­щей среды tвозд. = 30 °С и нормальном давлении и удельный вес дымовых газов, кГ/м3.


Определим возд.:

Получим:

Тогда

Потери напора в борове Pб найдем по формуле:

где — потери напора на преодоление местных сопротивлений, мм вод. ст.; —потери напора на прямолинейном участке борова, мм вод. ст.


Предварительно проведем расчет газохода. Схема устройства газоходов печи дана на рис. 44.

Площадь поперечного сечения борова подсчитываем по следую­щей формуле:

где G секундное количество продуктов сгорания, кг/сек; и — массовая скорость газов в борове, кг/(м2ceк);


Секундное количество продуктов сгорания:

Массовую скорость газов в борове определим так:

где — плотность продуктов сгорания при температуре tух = 400 °С, кг/м3; линейная скорость газов в борове, м/сек.


Найдем плотность продуктов сгорания при tух. = 400 °С:

где 0 = 1,24 кг/м3 — плотность продуктов сгорания при нормаль­ных условиях, рассчитанная раньше.


Тогда

Принимаем линейную скорость газов в борове =8 м/сек. Тогда массовая скорость газов:

Площадь поперечного сечения борова:

Рис. 44. Схема устройства газоходов печи.

Принимаем высоту борова h =l,36 м, ширину b = 1 м, длину lб =10 м.

Потери напора от местных сопротивлений рассчитываем по формуле:

где  — сумма коэффициентов местных сопротивлений.


Согласно схеме борова (см. рис. 44) дымовые газы делают в нем два поворота по 90° (один—при входе в боров, другой, не показанный на схеме,—при входе в дымовую трубу), проходят шибер, открытый наполовину, и проходят три входных канала в общий коллектор.

Коэффициент местного сопротивления при повороте на 90°:

где берется по таблице [35, стр. 414], в нашем случае при С = 0,9.


Поэтому для двух поворотов получим:

По той же таблице коэффициент местного сопротивления на­половину открытого шибера 2 = 4 и коэффициент местного со­противления при входе газа в коллектор 3 = 0,04.

По написанной выше формуле получим:

Потери напора на прямолинейном участке борова:

где коэффициент гидравлического сопротивления; dэ эквивалентный диаметр борова, м.


Коэффициент гидравлического сопротивления, зависящий от величины критерия Рейнольдса, находим по формуле:

где — кинематическая вязкость дымовых газов при температуре в борове tб tух. = 400 °С.


В нашем случае:

По формулам [35, стр. 15] найдем:

Тогда

По написанной выше формуле получим:

Таким образом:

Потери напора в дымовой трубе Ртр. найдем по формуле:

где — потери напора при входе газов в трубу и выходе из нее, мм вод. ст.; — потери напора на трение при движении газов в трубе, мм вод. ст.;


Предварительно рассчитаем диаметр дымовой трубы по фор­муле:

где и — массовая скорость газов на входе в трубу, кг/(м2ceк).


Массовую скорость газов на входе в трубу рассчитаем по фор­муле:

где линейная скорость газов на входе в дымовую трубу, м /сек; вх. — плотность газов при их температуре входа в дымовую тру­бу tвх., кг/м3.


Примем линейную скорость газов на входе в дымовую трубу = 8 м/сек, а их температуру tвх. = 395 °С.

Плотность газов при этой температуре:

Массовая скорость газов на входе в трубу

Подставив в формулу числовые значения величин, получим:

Примем D = 0,6 м.

Потери напора при входе газов в трубу и выходе из нее опре­делим по формуле:

где вх. и вых. — коэффициенты местных сопротивлений; ср. — линейная скорость газов при их средней тем­пературе в трубе, м/сек; ср. — плотность газов при средней температуре кг/м3.


Из таблицы [35, стр. 412] найдем:

вх. = 0,3 и вых. = 1,0

Принимаем температуру газов на выходе из дымовой трубы tвых. = 370 С, имея в виду потери тепла поверхностью трубы в окружающую среду.

Тогда средняя температура газов в трубе будет:

Плотность газов при этой температуре:

Линейная скорость газов при их средней температуре в трубе:

Тогда

Потери напора на трение при движении газов в дымовой трубе определяем по формуле:

где — коэффициент гидравлического сопротивления; Н — высота дымовой трубы, м.


Определим по формуле Якимова:

в которой а — коэффициент, принимаемый по таблице [35, стр. 412].


В нашем случае:

Предварительно принимая высоту дымовой трубы Н = 28 м, получим:

Таким образом:

Общая потеря напора по газовому тракту печи, или величина тяги в дымовой трубе:

Проверим высоту дымовой трубы по формуле:

где Тв — абсолютная температура окружающего воздуха; Тср. — абсолютная средняя температура дымовых газов в трубе, равная

Тогда

Ввиду небольшого расхождения рассчитанной и ранее принятой величин Н перерасчета не делаем.

5.Технико-экономическое обоснование проекта

5.1.Производственная программа

Целью технико-экономической оценки является подтверждение экономической целесообразности применения исследуемого проекта на практике.

В данном случае необходимо произвести расчет величины затрат необходимых для внедрения этого проекта в производство. Оценить изменение себестоимости продукции получаемой в цехе первичной переработки нефти и получения битума.

В цехе установлено две печи: для нагрева нефти П-1 и для подогрева мазута и пара П-3, после реконструкции должна быть установлена печь, которая полностью заменит обе печи П-1 и П-3. Производительность печи по нефти 15000 кг/час, по мазуту – 9000 кг/час, по пару – 413 кг/час.

Для облегчения расчета расчет затрат и оценку себестоимости будем производить по данным отчета технико-экономичнсекого отдела за 1998 год.

В 1998 году на установку принято 67050 т нефти (загрузка на 57%). Из нее произведено: дизельного топлива – 22800 т, бензиновой фракции – 12750 т, битума дорожного – 31500 т.

5.2.Расчет затрат на реконструкцию

Амортизационные отчисления характеризуют величину износа оборудования, зданий и сооружений. Амортизационные отчисления с вводом новых ОПФ представлены в табл. 25.

Затраты на реконструкцию цеха, а конкретно замене двух печей П-1 и П-3 на проектируемую, рассчитать достаточно сложно, поэтому для приблизительной оценки себестоимости продукции величину этих расходов примем следующим образом:

КВ1 = Цпечи + Цпечи 0,2

где Цпечи – стоимость спроектированной печи; Цпечи  0,2 – затраты на монтаж печи 20% от ее стоимости.


Цену печи примем следующим образом. Так как типы печей одинаковы, то ориентировочно можно принять цену печи по увеличению теплопроизводительности печи:

где ЦП-1 – цена установленной печи П-1 по нагреву нефти; Qпроект – теплопроизводительность спроектированной печи; QП-1 – теплопроизводительность спроектированной печи.


Тогда величина затрат на реконструкцию составит:

КВ1 = 1886250 + 18862500,2 = 2263500 руб.

Ввод новых производственных фондов повлияет только на амортизационные отчисления и следовательно на себестоимость продукции. Амортизация с вводом новых производственных фондов представлена в табл. 25.

Амортизация. Таблица 25

Наименование

Сумма, руб.

Балансовая стоимость ОПФ на 1.01.97 г. 38285268
Средняя норма амортизации, % 5,18
Амортизационные отчисления 1983177
Балансовая стоимость ОПФ с учетом переоценки на 1.01.98 г. 51685112
Средняя норма амортизации, % 5,16
Амортизационные отчисления 2666952
Ввод основных фондов в 1998 году, в том числе: 4582050
1. Газопровод, резервный нефтепровод 190000

норма амортизации, %

2,5

амортизационные отчисления

1583

2. Два резервуара РВС 400 м3 с автоматизиро­ванной системой налива

2128550

норма амортизации, %

5,8

амортизационные отчисления

41152
3. Реконструкция битумной установки (по проекту) 2263500

норма амортизации, %

5,14

амортизационные отчисления

116344

Итого амортизация новых ОПФ

95550

Балансовая стоимость ОПФ на 01.01.99г. 56267162
Среднегодовая стоимость ОПФ за 1998 год 53019250

Амортизационные отчисления за год

2762502

в том числе по кварталам

1 квартал

2 квартал

3 квартал

4 квартал


666738 666738 709473 719553
Средняя норма амортизации, % 5,18

Сумма материальных и прямых энергетических затрат с учетом транспортно-заготовительных расходов представляет собой часть переменных издержек на производство продукции, она принята по 1998 году. Затраты на основные материалы, на топливо и электроэнергию с вводом реконструкции цеха не изменятся.

Ввод нового оборудования по данному проекту не требует увеличения численности персонала, поэтому фонд заработной платы останется тот же.

5.3.Определение себестоимости

Составим план сметы затрат (табл. 26) по цеху первичной переработки нефти и получения битума с учетом расходов в 1998 году.

Для расчета себестоимости одной тонны продукции составляем калькуляцию себестоимости (цена базисной нефти, поступающей на переработку, без НДС - 454 руб. за 1 тонну), в которой расчет себестоимости отдельных продуктов ведется по коэффициенту распределения затрат (табл. 28).

В табл. 27 произведен расчет цен на готовую продукцию, получаемую на ЦППНиПБ, для структурных единиц

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: