Xreferat.com » Рефераты по химии » Кинетика химических и электрохимических процессов

Кинетика химических и электрохимических процессов

Размещено на /

Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Федеральное государственное образовательное учреждение высшего профессионального образования

«Чувашский государственный университет им. И.Н. Ульянова»


Методические указания к практическим занятиям по физической химии:

КИНЕТИКА ХИМИЧЕСКИХ И ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССОВ


Чебоксары 2007

УДК 541.1:541.2:541.6

Составители:

С.М. Верхунов

Р.А. Зимин

Э.В. Андреева

Н.И. Кольцов

Кинетика химических и электрохимических процессов: Метод. указания к практическим занятиям по физической химии / Сост. С.М. Верхунов, Р.А. Зимин, Э.В. Андреева, Н.И. Кольцов; Чуваш. ун-т. Чебоксары, 2007. 61 с.

Содержат задачи по следующим темам: электрическая проводимость, равновесия в растворах электролитов, электродвижущие силы, электродные потенциалы, формальная кинетика, сложные реакции, зависимость скорости реакции от температуры, фотохимические реакции. К каждой теме приведены необходимые теоретические сведения, основные уравнения, методики решения задач, предложены задачи для самостоятельного решения с ответами.

Для студентов III и IV курсов химико-фармацевтического факультета.

Ответственный редактор д-р хим. наук, профессор Н.И. Кольцов

Утверждено Методическим советом университета.

1. Электрическая проводимость. Равновесие в растворах электролитов


1.1 Необходимые исходные сведения и основные уравнения


Электролитом называется вещество, которое при взаимодействии с водой способно распадаться на ионы и тем самым переносить электрический заряд. По способу переноса электрического заряда все проводники делятся на два рода. К проводникам первого рода относятся проводники с электронной проводимостью (все металлы, углерод, графит, некоторые неметаллы). К проводникам второго рода относятся проводники с ионной проводимостью (растворы кислот, большинства солей и оснований, а также их расплавы).

Важнейшей характеристикой электрической проводимости является электрическое сопротивление проводников:


R = r∙l/s,(1.1)


где r - удельное электрическое сопротивление, Ом.м; l – длина проводника первого рода или расстояние между электродами в проводнике второго рода, м; s – площадь поперечного сечения проводника первого рода или площадь электродов проводника второго рода, м2.

Величина, обратная сопротивлению, называется электрической проводимостью:


1/r = c,(1.2)


где c - удельная электрическая проводимость, Ом-1.м-1. Удельной электрической проводимостью называется электрическая проводимость электролита, заключенного между электродами площадью 1 м2 и расположенными на расстоянии 1 м друг от друга.

Для растворов электролитов часто пользуются понятием «эквивалентная электрическая проводимость» l:


l = c/с (1.3)


где с – эквивалентная концентрация электролита, моль.м-3. Эквивалентной электрической проводимостью называется электрическая проводимость электролита, заключенного между электродами, находящимися на расстоянии 1 м друг от друга и такой площади, что в пространстве между ними содержится 1 моль электролита.

Зависимость эквивалентной электрической проводимости от концентрации описывается уравнением Кольрауша:


l = lҐ - АКинетика химических и электрохимических процессов,(1.4)


где lҐ - эквивалентная электрическая проводимость при бесконечном разбавлении, Ом-1.моль-1.м2; А – постоянная, зависящая от природы электролита.

Так как проводник второго рода при растворении в воде распадается на два типа ионов, то электрический заряд переносится совместно катионами и анионами и справедливо уравнение Кольрауша (закон независимости движения ионов):


lҐ = l+ + l-,(1.5)


где l+ и l- - электрические проводимости соответственно катиона и аниона, Ом-1.моль-1.м2. Электрическая проводимость катиона и аниона в большей степени определяется скоростью их движения:

u+ = u+0U/l и v- = v-0U/l,(1.6)


где u+0 и v-0 – абсолютные скорости движения ионов, м2.с-1.В-1; U/l – напряженность электрического поля, В.м-1,


l+ = F.v+0 и l- = F.v-0,(1.7)


где F – число Фарадея (F = 96500 Кл).

Абсолютные скорости движения ионов различны. Так как в проводниках второго рода электрический заряд переносится од-новременно катионами и анионами, то


Q = Q+ + Q-и I = I+ + I- (1.8)


где Q – перенесенный заряд, Кл; Q+ и Q- - заряд, перенесенный катионами и анионами, Кл; I, I-, I+ - общая сила тока и сила тока, определяемая движением анионов и катионов, А.

Количество заряда, перенесенного ионами, зависит от скорости движения (подвижности), заряда и размера ионов, а также от некоторых других факторов. В большинстве случаев доли зарядов, перенесенных разными видами ионов, не совпадают друг с другом. По этой причине вводится понятие о числах переноса ионов (t+ и t-). Числом переноса ионов называется доля заряда, перенесенного данным видом иона:


t+ = Q+/(Q+ + Q-) = I+/(I+ + I-); (1.9)

t- = Q-/(Q+ + Q-) = I-/(I+ + I-). (1.10)


Очевидно, что t+ + t- = 1. Отсюда:

t+ = 1 – t- и t- = 1 – t+. (1.11)


Числа переноса можно выражать через скорости движения и подвижности ионов:


t+ = v+0/(v+0 + v-0) = λ+/(λ+ + λ-) = λ+/λ∞;

t- = v-0/(v+0 + v-0) = λ-/(λ+ + λ-) = λ-/λ∞. (1.12)


Так как в ходе переноса заряда ионы разряжаются на электродах, то концентрации электролита в анодном, катодном и среднем пространствах различны:


t+ = Δск/Δс иt- = Δса/Δс (1.13)


где Dск и Dса– изменение концентрации электролита в катодном и анодном пространствах; Dс – общая убыль концентрации элек-тролита (изменение концентрации в среднем пространстве).

Количественно степень распада электролита на ионы выра-жается через a (степень диссоциации):


a = np/n, (1.14)


где np – количество молекул, распавшихся на ионы; n – общее количество молекул электролита, введенных в раствор. По значению a различают сильные и слабые электролиты (a > 0,85 и 0,25 > a > 0,85 соответственно).

При диссоциации слабого электролита, распадающегося на одновалентные ионы по схеме: АВ ↔ А+ + В-, константа диссоциации:

Кд = [А+].[В-]/[АВ], (1.15)


где символы в квадратных скобках указывают на концентрации соответствующих веществ. Если степень диссоциации


a = [А+]/с = [В-]/с = λ/λ∞, (1.16)

то Кд = a2.с, или a = Кинетика химических и электрохимических процессов. (1.17)


Соотношение (1.17) называется законом разведения Оствальда (в простейшей форме). После подстановки (1.16) в (1.17) закон разведения Оствальда примет вид


Кд = λ2. с/[(λ∞.(λ∞ - λ)]. (1.18)


Зависимость константы диссоциации от температуры описывается уравнением


lg (ККинетика химических и электрохимических процессовКинетика химических и электрохимических процессов) = -ΔНдисс(1/Т2 – 1/Т1)/(2,3.R), (1.19)


где DНдисс– теплота диссоциации, Дж.моль-1.

Работу диссоциации можно определить по уравнению изотермы Вант-Гоффа:


w = -DG0 = RTlnKи w = -DG0 = 2,3RTlgK, (1.20)


где DG0 – стандартное изменение энергии Гиббса (изобарно-изотермического потенциала) при диссоциации, кДж.моль-1.

Необходимо учесть, что для сильных электролитов в приведенные выше уравнения вместо концентрации необходимо подставлять активности, которые связаны с концентрациями через коэффициент активности:


а = g.c, (1.21)


где а – активность сильного электролита, моль.м-3; g - коэффициент активности сильного электролита при данной концентрации, с – молярная концентрация сильного электролита, моль.м-3;

Активностью сильного электролита называется активная часть этого вещества в растворе. Коэффициенты активностей для большинства веществ известны и приведены в справочнике (например, в [8]). Активность электролитов чаще всего выражают через моляльность m и средние ионные коэффициенты активности γ±.


Таблица 1 - Соотношения между моляльностью m, средней ионной моляльностью m±, активностью а и средним ионным коэффициентом активности γ± для некоторых электролитов

Тип валентности электролита Пример а = =(m±∙γ±)ν

а± =

= νКинетика химических и электрохимических процессов

1-1, 2-2, 3-3

KCl (1-1); ZnSO4 (2-2);

AlPO4 (3-3)

m2g±2 mg±
2-1, 1-2 CaCl2 (2-1); Na2SO4 (1-2) 4m3g±3

3Кинетика химических и электрохимических процессов mg±

3-1, 1-3 AlCl3 (3-1), Na3PO4 (1-3) 27m4g±4

4Кинетика химических и электрохимических процессов mg±

3-2, 2-3 Al(SO4)3 (3-2); Fe3(PO4)2 (2-3) 108m5g±5

5Кинетика химических и электрохимических процессовmg±


Здесь ν – количество ионов, на которые распадается данный электролит. Моляльностью называется число молей вещества (электролита), содержащегося в 1000 г чистого растворителя (для воды – в 1000 мл).

Зависимость средней ионной моляльности от моляльности электролита выражается уравнением


m± = m(n+n+.n-n-)1/n, (1.22)


где n+ и n- - соответственно количество катионов и анионов на которые распадается молекула электролита при диссоциации (n = n+ + n-). Средний ионный коэффициент активности можно выразить через ионные коэффициенты активности:


g± = (g+n+.g-n-)1/n, (1.23)


где g+ и g- - соответственно коэффициенты активности катиона и аниона. Средняя ионная активность составит


а± = m±..g±. (1.24)


Общая активность электролита:


а = (а±)n = а+n+.а-n-, (1.25)


где а+ и а- - соответственно активности катионов и анионов:


а+ = g+. m+иa- = g-. m-. (1.26)

Ионные моляльности связаны с моляльностью электролита соотношениями:

m+ = m Ч n+ иm- = m Ч n-. (1.27)


Зависимость среднего ионного коэффициента активности от ионной силы раствора (предельное уравнение Дебая и Гюккеля) имеет вид


lgg± = 0,509. z+. z-.Кинетика химических и электрохимических процессов. (1.28)


где z+ и z- - соответственно заряды катиона и аниона; I – ионная сила раствора:


I = 0,5.еmi.zi2. (1.29)


Cмвол i указывает на тип иона. Для 1-1 - валентного элек-тролита уравнение (1.29) имеет вид


lgg± = -0,509.Кинетика химических и электрохимических процессов. (1.30)


Это уравнение применимо для растворов электролитов, в которых I Ј 0,001.


1.2 Задачи с решениями


1. Удельная электрическая проводимость 0,135 моль/л раствора пропионовой кислоты С2Н5СООН равна 4,79.10-2 Ом-1.м-1. Рассчитайте эквивалентную электрическую проводимость раствора, константу диссоциации кислоты и рН раствора, если предельные подвижности Н+ и С2Н5СОО- равны 349,8 Ом.см2/моль и 37,2 Ом.см2/моль соответственно.

Решение: l∞ = 349,8 + 37,2 = 387,0 Ом-1.см2/моль; l = = c.1000/с = 4,79.10-2 Ом-1.м-1/0,135 моль.л-1 = 3,55. a = l/l∞ = = 3,55/387,0 = 0,009. Кд = (a2.с)/(1-a) = (0,0092.0,135)/(1–0,009) = = 1,15.105, [Н+] = a.с = 1,24.10-3 моль/л. рН = – lg [Н+] = 2,91.

Ответ: l = 3,55 Ом-1.см2/моль; a = 0,009; Кд =1,15.10-5 моль/л; рН = 2,91.

2. Для раствора КС1 концентрации 0,01 моль/л удельное сопротивление r = 709,22 Ом.см. Вычислите удельную (c) и эквивалентную (l ) электрические проводимости.

Решение. Удельную электрическую проводимость вычисляем по уравнению (1.2): c = 1/709,22 = 1,41.10-3 = = 0,141. Эквивалентная электрическая проводимость согласно уравнению (1.3) выражается уравнением l = 0,141/0,0 = 0,0141; l = 0,141.10-1.

Ответ: c = 0,141 Ом-1.м-1; l = 1,41.10-2 Ом-1.моль-1.м2.

3. Вычислите эквивалентную электрическую проводимость уксусной кислоты при бесконечном разведении, при 298 К, если электрические проводимости НС1, NаСООСН3, NaCl равны 0,0426; 0,0091; 0,0126 Ом-1.моль-1.м2 соответственно.

Решение. Составляем систему уравнений согласно (1.5):

l∞,HCl = l∞,H+ + l∞,Cl- = 0,0426 Ом-1.моль-1.м2 (1), l∞,CH3COOH = = l∞,Na++l∞,CH3COO- = 0,091 Ом-1.моль-1.м2 (2), l∞,NaCl = l∞,Na+ + + l∞,Cl- = 0,0126 Ом-1.моль-1.м2 (3). Согласно соотношению (1.5) складываем уравнения (1) и (2), вычитаем из них уравнение (3) и получаем

l∞,НС1 + l∞,СН3СООNа – l∞,NaС1 = lН+ + lСН3СОО- = l0,СН3СООН = = 0,0426 + 0,0091 – 0,0126 = 0,0391.

Ответ: l = 0,0391 Ом-1.моль-1.м2.

4. Для бесконечно разбавленного раствора NН4С1 при 298,2 К число переноса катиона t+ = 0,491. Вычислите электрическую подвижность и абсолютную скорость движения аниона С1-; l∞,Кинетика химических и электрохимических процессов = 0,0150 Ом-1.моль-1.м2.

Решение. Согласно уравнениям (1.9 и 1.10) l- = = l∞.(1 – t+) = 0,015. (1-0,491) = 0,00763 Ом-1.моль-1.м2. Абсолютную скорость движения v-0 рассчитываем по уравнению (1.7): v-0 = 0,00763 / 9,65.104 = 7,91.10-8.

Ответ: v-0 = 7,91.10-8 м2/(с.В).

5. При электролизе раствора AgNO3 на катоде выделилось 0,5831 г серебра, убыль AgNO3 в катодном пространстве составила 2,85.10-3 моль. Определите числа переноса t- и t+ для нитрата серебра.

Решение. Убыль серебра в катодном пространстве Dск и общая убыль AgNO3 в растворе Dс, соответствующая количеству серебра, выделившегося на катоде, должны быть выражены в одних и тех же единицах. Находим число молей серебра, выделившегося на катоде: Dс = Dn = m/M =0,5831/107,9=5,4.10-3 моль. Подставим в уравнение (1.13) и получим t- =2,85.10-3/5,4.10-3 = = 0,528; t+ = 1 – t- = 0,472.

Ответ: t- = 0,528; t+ = 0,472.

6. Для 0,1 М раствора Cr2(SO4)3 вычислите среднюю ионную моляльность, активность, общую активность электролита и активности ионов SO42- и Cr3+ при 298 К.

Решение. Среднюю ионную моляльность вычисляем по уравнению

m± = m (n+n+n-n-)1/n = (22.33)1/5. 0,1 = 0,255. Среднюю ионную активность вычисляем по уравнению а± = m±. g±.(g± = 0,0458 = = 0,255.0,0458=0,0177. Общую активность электролита а вычисляем по уравнению а = (а±)n = (0,0177)5 = 2,17.1010. Ионные моляльности mКинетика химических и электрохимических процессов и mКинетика химических и электрохимических процессов рассчитаем по уравнениям: mКинетика химических и электрохимических процессов= = m.nКинетика химических и электрохимических процессов= 0,1.3 = 0,3; mКинетика химических и электрохимических процессов = m.n Кинетика химических и электрохимических процессов = 0,1.2 = 0,2; активности аниона и катиона определяем по уравнениям аКинетика химических и электрохимических процессов= gКинетика химических и электрохимических процессов х х mКинетика химических и электрохимических процессов= 0,3.0,0458 = 0,0137; aКинетика химических и электрохимических процессов= gКинетика химических и электрохимических процессов. mКинетика химических и электрохимических процессов= = 0,2.0,0458 = 0,0092.

Ответ: m±=0,255 моль/1000 г; g±=0,0177; a=2,17.1010 моль/л; mКинетика химических и электрохимических процессов 0,3 моль/1000г; mКинетика химических и электрохимических процессов=0,2 моль/1000 г; aКинетика химических и электрохимических процессов= =0,0137 моль/л; aКинетика химических и электрохимических процессов=0,0092 моль/л.

7. Определите ионную силу I раствора, содержащего 0,001 моль Н2SO4 и 0,002 моль MgSO4 на 1000 г воды при 298 К.

Решение. Согласно уравнению (1.30): I = 0,5. (mКинетика химических и электрохимических процессов..z+2 + +mКинетика химических и электрохимических процессов..z-2- + mКинетика химических и электрохимических процессов..z+2 + mКинетика химических и электрохимических процессов..z-2). Моляльности ионов определяем по уравнению (1.30). Тогда ионная сила I=1/2.(2.0,001.12+0,001.22+0,002.22+0,002.22) = 0,011.

Ответ: I = 0,011.

8. Удельная электрическая проводимость с = 5%-го раствора нитрата магния при 18 оС равна 4,38 Ом-1.м-1, а его плотность – 1,038 г.см-3. Рассчитайте эквивалентную электрическую проводимость раствора λ и кажущуюся степень диссоциации соли в растворе. Подвижности ионов Mg2+ и NO3- при 18 оС равны 44,6 и 62,6 Ом-1.см2.моль-1.

Решение. М = с.r/МКинетика химических и электрохимических процессов = 0,05.1,038/148.1000 = = 0,70 моль.л-1; l = c/(с.1000) = 4,38/(0,70.1000) = = 6,25.10-3; l∞= 44,6 + 62,6 =107,2 Ом-1.см2.моль-1; a = l/l∞ = 62,5/107,2 = 0,583.

Ответ: l = 62,510-3 Ом-1.м2.моль-1; a = 0,583.


1.3 Задачи для самостоятельного решения


1. Константа диссоциации масляной кислоты С3Н7СООН равна 1,5.10-5. Вычислите степень ее диссоциации в 0,005 М растворе.

2. Чему равна концентрация ионов водорода в водном раст-воре муравьиной кислоты, если α = 0,03?

3. Вычислите ионную силу и активность ионов в растворе, содержащем 0,01 моль/л Ca(NO3)2 и 0,01 моль/л CaCl2.

4. Рассчитайте активность электролита а и среднюю ионную активность а± в растворе CaCl2 при 25 оC, если средний ионный коэффициент активности γ± = 0,518, а молярная концентрация m = 0,1.

5. Для реакции диссоциации муравьиной кислоты: НСООН ↔ Н+ + НСОО- дана зависимость константы от температуры: lgКД = -1342,85/Т + 5,2743 – 0,0152.T. Вычислите теплоту диссоциации муравьиной кислоты в разбавленном вод-ном растворе.

6. Определите температуру, при которой диссоциация му-равьиной кислоты в водном растворе максимальна. Уравнение зависимости константы диссоциации НСООН от температуры приведено в предыдущей задаче.

7. Рассчитайте удельную электрическую проводимость абсолютно чистой воды при 25 оС. Ионное произведение воды при этой температуре равно 1.10-14.

8. Эквивалентные электрические проводимости бесконечно разбавленных растворов KCl, KNO3, и AgNO3 при 25 оС равны соответственно 149,9, 145,0 и 133,4 Ом-1.см2.моль-1. Какова эквивалентная электрическая проводимость бесконечно разбавленного раствора AgCl при этой температуре?

9. Удельная электрическая проводимость 4 % -го водного раствора Н2SO4 при 18 оС равна 0,168 Ом-1.см-1, плотность раствора равна 1,026 г/см3. Рассчитайте эквивалентную электри-ческую проводимость этого раствора.

10. Для 0,01 молярного раствора KCl удельное сопротивление равно 709,22 Ом.см. Вычислите удельную и эквивалентную электрические проводимости.

11. Какую долю общего тока переносит ион Li+ в водном растворе LiBr при 25 оС?

12. Эквивалентная электрическая проводимость раствора уксусной кислоты молярной концентрации 1,59.10-4 моль.л-1 при 25 оС равна 12,77 Ом-1.см2.моль-1. Рассчитайте константу диссо-циации кислоты и рН раствора.

13. Для бесконечно разбавленного раствора NH4Cl при 298,2 К число переноса катиона t+ = 0,491. Вычислите электро-литическую подвижность и абсолютную скорость движения аниона Cl-; λ∞(NH4Cl) = 0,015 Ом-1.моль-1.м2.

14. При электролизе раствора AgNO3 на катоде выделилось 0,5831 г серебра, убыль AgNO3 в анодном пространстве соста-вила 2,85.10-3 моль. Определите числа переноса t+ и t- для AgNO3.

15. При электролизе раствора AgNO3 c серебряными электродами увеличение количества соли в анодном про-странстве составило 0,0625 г. Чему равна убыль соли, г, в катодном пространстве?

2. ЭЛЕКТРОДВИЖУЩИЕ СИЛЫ. ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ


2.1 Необходимые исходные сведения и основные уравнения


ЭДС гальванического элемента Е равна разности условных электродных потенциалов его полуэлементов φ1 и φ2. Если значением диффузионного потенциала можно пренебречь то


Е = φ2 - φ1(2.1)


(индекс 2 относится к более положительному электродному потенциалу). Электрохимические реакции, протекающие на электродах, и сами электроды разделяют на следующие типы:

1. Электроды 1-го рода, обратимые по катиону: Меn+ + ne = = Ме0, где Меn+ и Ме0 ― окисленная и восстановленная формы вещества; nе - количество электронов. Потенциал электрода 1-го рода рассчитывается по уравнению Нернста:


φ = φ0Кинетика химических и электрохимических процессов(aOx/aRed),(2.2)


где φ - потенциал электрода, В; φ0 - стандартный потенциал электрода, В; n - число электронов, участвующих в элемен-тарной реакции; F - число Фарадея; aRed и aOx - активности вос-становленной и окисленной форм вещества, вступающего в реакцию. Множитель Кинетика химических и электрохимических процессов при Т = 298 К и значении R, равном 8,31 Дж/(моль.К), равен 0,059. К электродам 1-го рода относятся:

а) серебряный электрод:

Ag+│Ag; Ag+ + e = Ag0; n =1;aOx = aAg+; aRed = aAg =1,

φ = φ0Ag+ Кинетика химических и электрохимических процессовlgaAg+; (2.3)


б) амальгамный электрод:


Cd2+ │[Cd] (Hg)Cd2+ + 2e = [Cd]ам; n = 2; aOx = aCd+

Кинетика химических и электрохимических процессов; φ = φ0AСd2+ Кинетика химических и электрохимических процессов,(2.4)


где φКинетика химических и электрохимических процессов - потенциал амальгамного электрода при активности кадмия в амальгаме, а[Cd] = 1;

в) газовый электрод:


H+ │Pt, H2; H+ + e =Ѕ H2; n = 1; aOx = aH++; aRed = Кинетика химических и электрохимических процессов= Кинетика химических и электрохимических процессов;

φ = φКинетика химических и электрохимических процессов.(2.5)


2. Электроды 2-го рода, обратимые по аниону, представляют собой металл, покрытый труднорастворимой солью этого метал-ла, который находится в равновесии с раствором, содержащим соответствующий анион: AgCl + e = Ag + Cl-; n=1; aOx = aAgCl = 1; aRed = aCl-;


φ = φКинетика химических и электрохимических процессов; (2.6)

φ02 = φКинетика химических и электрохимических процессов,(2.7)

где j Кинетика химических и электрохимических процессов ― стандартный потенциал серебряного электрода, обратимого по катиону; ПРAgCl ― произведение растворимости хлорида серебра. К электродам 2-го рода относятся:

а) газовый электрод:


Ѕ Cl2 + e = Cl-; n = 1; aOx = Кинетика химических и электрохимических процессов; aRed = Кинетика химических и электрохимических процессов;

φ = φКинетика химических и электрохимических процессов. (2.8)


б) каломельный электрод Cl-│Hg2Cl2, на котором идет электродная реакция HgCl2 + 2e = Hg+ + 2Cl- ;


φКинетика химических и электрохимических процессов φКинетика химических и электрохимических процессов.


в) хлорсеребряный электрод Cl-│AgCl, Ag, на котором идет электродная реакция AgCl + e = Ag+ + Cl-;


φКинетика химических и электрохимических процессовφКинетика химических и электрохимических процессов.


Окислительно-восстановительные электроды (редокси – электроды) представляют собой инертный металл, опущенный в раствор, содержащий окисленную и восстановленную формы. Уравнение Нернста для данных электродов имеет вид:


φ Red = φКинетика химических и электрохимических процессов, (2.9)

где аОх(аО) ― активность окисленного иона; aRed(aВ) - активность восстановленного иона. Они делятся:

а) на простые: Fe3+ + e = Fe2+; n = 1; aRed = Кинетика химических и электрохимических процессов; aOx = Кинетика химических и электрохимических процессов;


φ = φКинетика химических и электрохимических процессов; (2.10)

Кинетика химических и электрохимических процессов; n = 1; Кинетика химических и электрохимических процессов; Кинетика
    <div class=

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: