Xreferat.com » Рефераты по химии » Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

сотрудниками [15] исследовала сорбционные свойства волокнистого сорбента типа Глипан по отношению к хлорокомплексу палладия (II). Установлено, что сорбенты типа Глипан на основе полиакрилонитрила, модифицированные полиэтиленполиаминами (Глипан-А), аминогунидином (Глипан-3) и тиосемикарбазидом (Глипан-1), способны извлекать хлорокомплексы палладия (II) из кислых растворов, а Глипан-А – и из нейтральных. Определены кинетические и емкостные характеристики в солянокислых растворах. При измерении ИК спектров сорбентов в ближней и дальней областях заметны изменения после сорбции хлорокомплекса палладия (II). Показано, что извлечение палладия (II) из кислых растворов волокнами Глипан-А и Глипан-3 происходит по ионообменному механизму с образованием в фазе волокон ониевых хлорокомплексов палладия (II). В случае волокна Глипан-1 сорбция палладия (II) связана с реакциями комплексообразования с функциональными группами сорбента как с полимерным лигандом.

Позже [16] были изучены сорбционные свойства азотсеросодержащего волокна Глипан-1 по отношению к хлорокомплексу платины (II) - K2[PtCl4]. Волокнистый сорбент Глипан-1 получали обработкой ПАН волокна тиосемикарбазидом. Волокно содержит группы NH2-NH-C(S)-NH- и карбоксильные группы. Сорбцию проводили в растворах 0,1-4,0 м HCl, 0,1 м KCl, 0,1-1,0 м NaCl (CPt=1-10 ммоль·л-1). ИК спектры сорбентов в области 400-4000 см-1 измеряли на спектрофотометре ИКС-29 с тремя призмами LiF (4000-3000 см-1), CsCl (1800-700см-1), KBr (700-400см-1). Образцы готовили прессованием с KBr. ИК спектры волокон после сорбции в области 140-400 см-1 измеряли на спектрофотометре FIS-3, Hitachi. Образцы готовили прессованием в порошкообразном полиэтилене.

Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГОсобенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ В ДИК спектрах волокна после сорбции K2[PtCl4] наблюдается широкий размытый максимум в области 322-326 см-1 и перегиб в области 300 см-1. Было предположено образование в фазе волокна комплекса состава [(RThscH)Pt2+Cl2] цис-конфигурации. Часть тиоамидных групп волокна не участвует в реакции комплексообразования. Высокие скорости извлечения K2[PtCl4] волокном Глипан-1 из кислой среды позволили предположить, что происходит образование ониевых комплексов:


Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГВ [17] изучена сорбция Глипан-1 по отношению к хлорокомплексу платины (IV) - K2[PtCl6]. На основании совокупности сорбционных характеристик волокна Глипан-1 по отношению к хлоркомплексам Pt (IV) и результатов измерения ДИК спектров предположены основные стадии химических превращений в процессе сорбции. Во всех случаях сорбция связана с реакциями комплексообразования с сорбентом как полимерным лигандом и окислительно-восстановительными превращениями в фазе волокна. Сорбируемой формой платины оказывается комплекс состава:


Выявлено, что реакции комплексообразования хлорокомплексов платины (II) и платины (IV) с полимерным лигандом, волокном Глипан-1 с привитыми тиосемикарбазидными группами протекают различно.

Авторы работы [18] изучали сорбционные свойства волокна Глипан-А по отношению к хлорокомплексу платины (IV). Данный сорбент получили обработкой ПАН волокна полиэтиленполиамином при повышенной температуре в среде жидкого полиамина. Волокно содержит аминогруппы R-NH2 и R-NH-Rґ (СОЕHCl 5.5-6 ммоль·г-1) и карбоксильные группы (СОЕNaOH 1.2 ммоль·г-1). В ДИК спектре волокна Глипан-А после сорбции K2[PtCl6] из кислых растворов наблюдается полоса валентных колебаний Pt-Cl 326-328 см-1. Полосы же валентных колебаний Pt-Cl в соединениях ониевого типа (AH)2[PtCl6] находятся в области 330-340 см-1, а для соединений типа (AH)2[PtCl4] ν (Pt-Cl) располагаются в области 320 см-1. Таким образом, на основании ИК-спектроскопии предположили, что процесс сорбционного извлечения K2[PtCl6] волокном Глипан-А сопровождается частичным восстановлением Pt (IV) до Pt (II). При этом происходит реакция внутримолекулярного окисления-восстановления и в качестве восстановителя выступает хлорид-ион. Т.е. процесс сорбционного извлечения хлорокомплекса Pt (IV) из солянокислых растворов сопровождается образованием в фазе волокна Глипан-А комплексов состава (R2NH2)2[PtCl6] и (R2NH2)2[PtCl4]. При сорбции K2[PtCl6] волокном Глипан-А в кислом растворе происходит усложнение контура поглощения ИК-спектра в ближней области (2500-3000 см-1), что свидетельствует об образовании водородных связей между внутрисферными хлорид-ионами и протонами, находящимися во внешней сфере. Изменение контура поглощения полос деформационных колебаний N-H (δ NH) в области 1600 см-1 указывает на возникновение водородных связей. Интересно отметить, что при сорбции K2[PtCl6] волокном Глипан-А из кислых растворов при нагревании (80˚С) в ДИК спектре волокна наблюдаются две размытые полосы валентных колебаний Pt-Cl, которые можно отнести к аминохлорокомплексам Pt(IV) и Pt(II) [(R2NH)2PtCl4] и [(R2NH)2PtCl2] или [R2NH2][(R2NH)PtIVCl5] и [R2NH2][(R2NH)PtIICl3]. После сорбции K2[PtCl6] из нейтральных растворов (растворов KCl) волокном Глипан-А не наблюдается заметных изменений в ИК спектрах ни в ближней, ни в дальней областях.

Позже [19] изучены особенности сорбционного извлечения хлорокомплекса платины (II) волокном Глипан-А из солянокислых растворов. Для установления состава комплексов, образующихся в фазе волокна, были сняты ИК спектры в дальней области. Показано, что сорбция K2PtCl4 из кислой среды сопровождается образованием в фазе волокна ониевых соединений типа (R2NH2)2[PtCl4] или (RNH3)2[PtCl4], а из сред, близких к нейтральным – цис-диаминодихлорокомплексов - [(R2NH)2PtCl2] или [(RNH2)2PtCl2]. Термогравиметрические исследования образцов волокна Глипан-А с сорбированными на них ионами платины (II) подтвердили результаты спектроскопического исследования.

В статических условиях исследованы [20] сорбционные свойства волокнистых сорбентов, полученных модифицированием полиакрилонитрила полиэтиленполиамином (ГЛИПАН-2), поли-2-метил-5-винилпиридином (ПАН-МВП) и тиосемикарбазидом (ГЛИПАН-1) по отношению к сульфату палладия (II) в 0.1- 5.0 м растворах серной кислоты.

Методами ИК, РФЭ спектроскопии, ЭСП, элементного и дериватографического анализов установлено, что извлечение палладия во всех случаях связано с реакциями комплексообразования с функциональными группами сорбентов. Волокна с азотсодержащими группами отличаются более быстрой кинетикой сорбции. На основании кинетических данных высказано предположение, что вначале происходит образование ониевых соединений с дальнейшим превращением типа андерсоновской перегруппировки и образованием в фазе волокна аминосульфатокомплексов [(RPy)2PdSO4] [(RNH2)2PdSO4], где сульфат-ион выступает в роли бидентантного или мостикового лиганда. Аминосульфатокомплексы палладия (II) прочно удерживаются в фазе волокна (десорбция не превышает 10-15%).

Авторами работы [21] синтезированы гетероцепные полимерные сорбенты, содержащие третичный атом азота. Сорбенты могут быть использованы для концентрирования платиновых металлов. Сорбционным центром является третичный атом азота. Для подтверждения этого проведен элементный анализ образующихся при сорбции комплексов, полученных в разных условиях и выделенных при насыщении сорбента из слабокислых сред. Отношение Me:Cl:N для палладия, золота и платины составляет соответственно 1:2:2, 1:3:1 и 1:6:2. Можно предположить, что из сред, близких к нейтральным, золото и палладий сорбируются с образованием координационно - сольватированных соединений. В случае платины комплексообразование, по-видимому, протекает с образованием ионных ассоциатов, что, вероятно, преобладает при сорбции из кислых сред.

Исследована [22] сорбция родия (III), палладия (II) и платины (IV) из хлоридных растворов полимером на основе полистирола, содержащим диэтилентриаминные группировки. Палладий (II) количественно извлекается из растворов 2-5 М HCl при скорости пропускании раствора до 10 мл/мин на микроколонках с сорбентом объемом 0,1 мл. Родий (III) наиболее эффективно извлекается из 6-7 М HCl, платина (IV) – из 3 М HCl. Методами спектрофотометрии и спектроскопии диффузионного отражения исследованы формы металлов в растворе и твердой фазе. Показано, что при сHCl>1 моль/л сорбция обусловлена ионообменным взаимодействием; извлекаются преимущественно безводные хлорокомплексы металлов. Извлечение металлов на сорбенте при pH>1 сопровождается внутрисферной координацией металлов с азотом функциональных групп. Предложена процедура группового динамического концентрирования родия (III), палладия (II) и платины (IV), заключающаяся в разбавлении пробы до оптимальной концентрации HCl в потоке непосредственно перед колонкой.

Хелатные смолы: В последнее время все большее внимание уделяется использованию хелатных сорбентов для сорбции платиновых металлов [23]. Наиболее детально изучена сорбция хлорокомплексов палладия (II) из растворов соляной, серной и хлорной кислот хелатным сорбентом марки ХМС-8-АХ, полученным аминированием хлорметилированного сополимера стирола с дивинилбензолом 8-аминохинолином. Из 1 н раствора соляной кислоты сорбция Pd (II) 100%. Это объясняется тем, что палладий образует прочные хелатные циклы с функциональными группами сорбента.

Исследованы комплексообразующие свойства растворимых ионитов на основе хлормитилированных полистиролов, пиридинкарбоновых кислот и их нитрилов. На основании проведенных исследований найдены оптимальные условия выделения и концентрирования ионов платиновых в частности и палладия (II) из растворов.

Авторами работы [24] был синтезирован новый хелатный сорбент ПВБ-МП-8Т аминированием 3(5)-метилпиразолом хлорметилированного сополимера стирола с дивинилбензолом макропористой структуры. Сорбент представляет собой гранулы сферической формы, окрашенные в бледно-желтый цвет, устойчивые при нагревании в сильнокислых растворах.

Исследована сорбция благородных металлов сорбентом ПВБ-МП-8Т, а также возможности применения сорбента для концентрирования благородных металлов из сложных солевых растворов. Характер взаимодействия сорбента с ионами благородных металлов изучен методом ИК-спектроскопии. ИК-спектры сорбента, насыщенного металлами, исследовали в области 200-4000 см-1. Анализ спектров показал, что полосы поглощения пиразольной группы и полимерной основы прекрываются в области 400-4000 см-1 и существенно не меняются при насыщении сорбента металлом. В области 200-400 см-1 появляются полосы, отнесенные к колебаниям связи Me-N (для Pt-300 см-1), что может свидетельствовать о комплексообразовании благородных металлов по атому азота пиразольнoй группы. Отсутствие в спектрах изменений валентных колебаний группы NH пиразольного цикла при насыщении сорбента металлом позволяет предполагать, что при взаимодействии благородных металлов с сорбентом ионообменные механизм маловероятен.


1.4.2.Изучение кинетики сорбции палладия на комплексообразующих сорбентах

В работе [25] исследовали хлоро- и бромокомплексов Pd двумя типами анионообменных волокон, содержащих третичные амины, на основе поливинилспиртового волокна. Авторы установили, что бромидные комплексы сорбируются лучше, чем хлоридные. Для обоих волокон с повышением концентрации HCl процент сорбция Pd снижается.

Сорбцию Pd из 0,5М раствора HCl изучали в динамических условиях на волокне – сополимере целлюлозы с поли-2-метилвинилпиридином и с полиметакриловой кислотой. Ёмкость до проскока по палладию составляет 28,2 мг/г.

Микрограммовые количества хлорокомплексов палладия из солянокислых растворов сорбировали волокнами на основе целлюлозы и ПВС. В таблице 1 приведены типы исследованных волокон и величины сорбции палладия. Авторы установили, что сорбционные свойства мало зависят от температуры (20 и 100єС).

Таблица 1. Сорбционные свойства модифицированных ПВС и целлюлозных волокон

№ волокна Волокно Сорбировано, %
III ПВС волокно с первичными аминогруппами 85,0
IV Дегидратированное ПВС волокно с третичными аминогруппами 100
V Дегидратированное ПВС волокно с четвертичными аминогруппами 97,3
VI Привитой сополимер (30%ПМВП и 70%ПВС) 100
VII Сополимер целлюлозы и поли-2-метил-5-винилпиридина 95,7

В работах [26,27] предложены сорбенты волокнистой структуры на основе поливиниленового карбоцепного волокна – ПОЛИОРГС-VI и ПОЛИОРГС-Х. Сорбенты устойчивы в кислых и щелочных средах, обладают высокой селективностью к платиновым металлам. Сорбционная ёмкость сорбентов в 1М НСl составляет 48 и 50 мг/г соответственно. Она сохраняется высокой в присутствии 5*106-кратных количествах солей меди, железа, кобальта, никеля.

Было исследовано волокно Мтилон-Т, которое содержит тиоамидные группы. Оно получено методом привитой сополимеризацией полиакрилонитрила и целлюлозы с последующей обработкой сероводородом. Данное волокно обладает высокой селективностью по отношению к платиновым металлам. Сорбционная ёмкость волокна по отношению к хлорокомплексам палладия определена при 100єС в 1М НСl и составляет 83 мг/г. В присутствии солей железа и меди сорбция снижается на 50-70%. Необходимо отметить, что волокно неустойчиво в кислых растворах и в при действии окислителей происходит разрушение как целлюлозной матрицы, так и функциональных групп. Опыты показали, что разбавленные растворы азотной кислоты, аммиака, перекиси водорода и щавелевой кислоты вытесняют из волокна не более 10% поглощенных ионов металлов[28]. Это свидетельствует о большой прочности ионов с тиоамидными группами, что вряд ли может быть при связывании ионов металлов по ионообменному механизму. Полное вытеснение ионов металлов происходит при действии концентрированной азотной кислотой. Однако при этом разрушается волокно. ИК-спектры волокна Мтилон-Т до и после сорбции свидетельствуют о возможности образования связей между ионами металлов и атомами азота и серы тиоамидной группы[29].

Симановой С.А. и Кукушкиным Ю.Н. было исследовано волокно МСПВС, которое получено на основе привитого сополимера ПВС-ПАН с последующей модификацией его раствором сульфида натрия. В волокне присутствуют тиоамидные группы находящиеся в таутомерном равновесии, включающем тионную и сульфгидрильную группы. Это волокно устойчиво к действию кислот, щелочей и окислителей. МСПВС волокно селективно по отношению к платиновым металлам. Емкостные и кинетические характеристики МСПВС волокна исследованы в солянокислых комплексам платиновых металлов при температуре 20 и 98єС (См=0,001-0,01 моль/л). Во всех случаях сорбция зависит от интенсивности перемешивания, следовательно, лимитирующей стадией сорбции является диффузия. Зависимость кинетического коэффициента Вτ и –ln(1-F) от времени для всех хлоркомплексов платиновых металлов свидетельствует о смешанно-диффузионном типе кинетики сорбции. Небольшие значения энергий активации согласуются с диффузионным типом кинетики сорбции [30]. Для изучения механизма сорбции оценивалось отношение серы в волокне к количеству сорбированного металла. Они установили, что 90% всей серы волокна участвует в образовании связи М-S, что подтверждает тёмная окраска волокон, сорбировавших платиновые металлы. После сорбции наблюдается понижение значения рН растворов. Образование прочных донорно-акцепторных связей М-S приводит к необратимой сорбции платиновых металлов модифицированными ПВС волокнами. Действительно, попытки элюировать металлы с волокон концентрированной соляной кислотой, HNO3 (1:1), аммиаком, перекисью водорода не привели к успеху. В подтверждение образования связи М-S при сорбции хлоридных комплексов платиновых металлов волокнами ПВС были измерены ИК-спектры волокна до и после сорбции. Образование связи М-S подтверждается и масс-спектрами модифицированных ПВС волокон до и после сорбции платиновых металлов[31].

Симанова С.А. с сотрудниками [32] исследовала сорбционные свойства волокнистого сорбента типа Глипан по отношению к хлорокомплексу палладия (II). Установлено, что сорбенты типа Глипан на основе полиакрилонитрила, модифицированные полиэтиленполиаминами (Глипан-А), аминогунидином (Глипан-3) и тиосемикарбазидом (Глипан-1), способны извлекать хлорокомплексы палладия (II) из кислых растворов, а Глипан-А – и из нейтральных. Определены кинетические и емкостные характеристики в солянокислых растворах. При измерении ИК спектров сорбентов в ближней и дальней областях заметны изменения после сорбции хлорокомплекса палладия (II). Показано, что извлечение палладия (II) из кислых растворов волокнами Глипан-А и Глипан-3 происходит по ионообменному механизму с образованием в фазе волокон ониевых хлорокомплексов палладия (II). В случае волокна Глипан-1 сорбция палладия (II) связана с реакциями комплексообразования с функциональными группами сорбента как с полимерным лигандом.

Группой ученых были исследованы сорбционные свойства сорбентов типа Тиопан – сополимеров полиакрилонитрила с привитым полиглицидилметакрилатом, с последующей модификацией. Определены кинетические и ёмкостные характеристики сорбентов в солянокислых и хлоридных растворах. Анализ кинетических зависимостей сорбционного процесса при 98єС позволяет им предположить смешано-диффузионный тип кинетики сорбции Pd из солянокислых растворов. Сорбция хлорокомплекса Pd серосодержащими волокнами типа Тиопан во всех случаях имеет практически необратимый характер. На примере, Тиопана-2 было показано, что 4-6М НСl удается десорбировать не более не более 2% палладия(1-2ч контакта при 20єС), однако палладий количественно десорбировать 10%-ным раствором тиомочевины в 0,5М НСl. Для установления состава и строения комплексов, образующихся в фазе сорбентов, снимали ИК-спектры в дальней области. В случае сорбции хлорокомплексов палладия(II) Тиопаном-2 в ДИК спектрах отсутсвуют характерные полосы, соответствующие валентным колебаниям Pd-Cl. На основании, ДИК спектров высказано, предположение, что процесс извлечения палладия Тиопаном-2 протекает через две стадии: образование комплексных соединений с тиоамидными группами волокна через атом серы, с последующим гидролитическим разрывом связи C-S и образованием сульфида палладия, удерживаемого в порах волокна силами Ван-дер-Ваальса. На образование сульфида в процессе сорбции указывает черный цвет волокна[33].

В работе [34] изучена сорбция К2[PdCl4] на сополимере полиакрилонитрильного волокна с поли-2-метил-5-винилпиридином и установлен состав и строение комплекса палладия с сорбентом как полимерным лигандом. Равновесие в распределении палладия между волокном и раствором в кислых средах устанавливается в течение 10-15 минут, а статическая сорбционная ёмкость ПАН-МВП по 0,1М НСl составляет 4,2 - 4,5 ммоль/г. Сорбированный палладий окрашивает волокно в желтый цвет (исходное волокно имеет светло-бежевую окраску). Хлорокомплексы палладия сравнительно прочно удерживаются в фазе волокна. Десорбировать 70% палладия лишь 6М соляной кислотой. Для определения состава комплекса металла с волокном были сняты ИК-спектры в ближних и дальних областях. Определенно, что сорбция из кислых растворов протекает преимущественно по ионообменному механизму и связано с образованием в фазе волокна ониевых хлорокомплексов.

Палладий (II) прочно удерживается анионитом АВ-17, на основе сополимера стирола и дивинилбензола (8%), содержащий триметиламмонийные активные группы, в Cl-форме. Вымыть палладий (II) можно только 11,5н раствором соляной кислоты, причем процесс элюирования очень длительный. Хорошим элюентом для палладия (II) в этих условиях является раствор 3н хлорной кислоты. Палладий в 1н растворе фтористого водорода хорошо сорбируется анионитом АВ-17 в F-форме. Десорбция палладия (II) из ионита удается лишь концентрированной плавиковой кислотой (20н) [35].

Необратимое взаимодействие ПМГ по механизму внутрисферного обмена лигандов обусловлено образованием прочной связи металла с сорбентом, которая может усилиться при нагревании или высыхании насыщенного сорбента. Если комплексообразование в процессе сорбции завершится на стадии образования ониевых хлорокомплексов, то возможно элюирование с помощью кислот. Наиболее эффективнее использование раствора тиомочевины в соляной кислоте[36].

На основе литературных данных были сделаны сводные таблицы применяемых сорбционных материалов. В таблице 2 представлены основные свойства и функциональные группы волокнистых сорбентов и их кинетические характеристики, а в таблице 3 механизмы взаимодействия ионов металлов с волокнистыми сорбентами.


Таблица 2. ССЕ и тип кинетики волокнистых сорбентов

Название сорбента Функциональные группы ССЕ или степень извлечения Тип кинетики Литература
МСПВС

Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ


Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

Из хлоридных комплексов в 2м HCI при 20°C

Pd(2)-0,77 ммоль/г

При 98°C

Pd(2)-1,80 ммоль/г

Смешанно-диффузионный (“гелевая” и “пленочная” диффузия) 30,31
Мтилон-Т

Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

Из хлоридных комплексов в 1м HCI при 100°C

Pd(2)-83,0 мг/г

Смешанно-диффузионный 28,29
Полимер стирольного типа с меркапто- группами.

Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

Из хлоридных комплексов в 1м HCI при 20°C

Pd(2)-0,62 ммоль/г



31

Тиопан-2

Основа ПАН

Модифиц. реагент


Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

Из хлоридных комплексов в 1м HCI

При 20°C

Pd(2)-0,83 ммоль/г

При 98°C

Pd(2)-1,43 ммоль/г

Смешанно-диффузионный 33

Тиопан-5

Основа ПАН

Модифиц. реагент


Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

Из хлоридных комплексов в 1м HCI

При 20°C

Pd(2)-0,53 ммоль/г

При 98°C

Pd(2)-0,82 ммоль/г

Смешанно-диффузионный 33

Тиопан-6

Основа ПАН

Модифиц. реагент


Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

Из хлоридных комплексов в 1м HCI при 20°C

Pd(2)-0,41 ммоль/г

При 98°C

Pd(2)-0,57 ммоль/г

Смешанно-диффузионный 33

Таблица 3. Механизм взаимодействия волокнистых сорбентов

Волокно Предполагаемый механизм сорбции Литература
ПАН-МВП

2RPy∙HCl+[PdCl4]2-↔(RPyH)2[PdCl4]+2Cl-

Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

34
Полимер стирольно-го типа с меркапто- группами

2R-CH2-SH+2K2[PdCl4]→[Pd(R-CH2-SH)Cl2]2+4KCl

Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

31
МСПВС

1.При рН≥7

[PdCl4]-2+H2O↔[Pd(H2O)nCl4-n]-2-n+nCl-, где n≤2

[Pd(H2O)2Cl2]+R-С(NH2)S→[Pd{R-С(NH2)S}H2OCl]

2.При рН<7

[PdCl4]-2+ R-С(NH2)S→[Pd{R-С(NH2)S}Cl3]-+Cl-

Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

30,31
Мтилон-Т

Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

28,29
Тиопан-2

[PdCl4]-2+R-S-CS-N(C2H5)2 →[Pd{D-S-CS-N(C2H5)2}Cl3]-+Cl-

Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

33

1.4.3 Формы нахождения палладия в растворе

Возможность выделения палладия с помощью ионного обмена напрямую связана с формами нахождения его в растворах различного состава.

Высокая склонность палладия, как и всех платиновых металлов, к комплексообразованию, приводит к тому, что палладий легко извлекается из технических растворов в виде комплексов. Рассмотрим некоторые из них.

Хлоридные комплексы палладия являются наиболее широко распространенными. Гексахлорпалладаты (Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ) устойчивы лишь в присутствии окислителей, при нагревании разлагаются до тетрахлорпалладатов по схеме:


Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

В водных растворах хлорида палладия (2) при рН<1,0 и концентрации металла 10-6—10-2 моль/л в зависимости от концентрации хлорид-иона образуются плоскостные комплексы Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ, состав которых и значения констант устойчивости установлены различными физико-химическими методами [37].

Кривые распределения отмечают отсутствие доминирования, каких либо комплексов, но при концентрации хлорид-иона больше 1моль/л, доминирует форма Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ. В области концентраций хлорид-иона 0.1-0.5 моль/л сосуществуют комплексы Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГи Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ.

Таким образом, в литературе есть сообщения об изучении сорбции платиновых металлов на азот и серосодержащих волокнистых сорбентах. Однако публикаций об исследовании сорбции платиновых металлов на сорбентах, в составе которых тиоамидные и пиридиновые группы, сравнительно невелико. Поэтому исследование сорбции палладия на данных сорбентах является актуальным и этому вопросу нами уделено особое внимание.

палладий сорбция хлоридный волокно


2. Экспериментальная часть


2.1 Техника безопасности при выполнении работы


2.1.1.Правила работы с едкими веществами (кислоты, щелочи)

Едкие вещества (кислоты и концентрированные растворы щелочей) попадая на кожу, вызывают ожоги. Щелочь в сухом виде при попадании на кожу также может вызвать ожоги. Особая опасность заключается в возможности поражения глаз.

При любых работах с едкими веществами обязательно применение защитных очков или масок.

Переливать кислоты можно только при включенной тяге в вытяжном шкафу. Дверцы шкафа должны быть прикрыты. Рекомендуется переливать кислоты с помощью специального сифона.

Разбавление серной кислоты следует производить приливанием кислоты в воду и только в жаростойких и фарфоровых стаканах, т.к. при этом происходит значительное выделение тепла. Склянки с концентрированными кислотами, а также бромом переносить только в ведре, а при переливании склянку нельзя держать за горлышко. Растворять едкие щелочи следует путем медленно прибавления к воде небольших кусочков; куски щелочи брать щипцами.

Разлитые кислоты и щелочи следует немедленно нейтрализовать и только после этого проводить уборку.


2.1.2 Правила безопасной работы с электрооборудованием и электроприборами

При работе с электрооборудованием и электроприборами возможны поражения электрическим током, причинами которых могут быть:

работа при неисправном электрооборудовании (рубильники, двигатели и т.п.);

электрический ток может вызвать пожар и взрыв.

Работы в лаборатории должны проводиться при наличии исправного электрооборудования.

Все неисправности электроприборов, электроарматуры, электросети и прочего электрооборудования должны устраняться только электриком.

Запрещается переносить включенные приборы и ремонтировать оборудование, находящееся под током.

Для защиты глаз от действия света электрической дуги и лазерного излучения следует надевать специальные очки со стеклами желто-зеленого цвета.

Для предупреждения несчастных случаев на установках высокого напряжения следует вывешивать плакаты с изображением красной зигзагообразной стрелы и надписью: "Не трогать - смертельно!".

Шкафы, в которых установлены щитки электрорубильников, должны быть закрыты.

Запрещается вешать на штепсельные розетки, выключатели и электропровода различные вещи, укреплять провода веревкой или проволокой.

В случае перерыва в подаче тока все электроприборы, электромоторы и другое электрооборудование должно быть немедленно выключено.


2.2 Методика анализа


2.2.1 Спектрофотометрическое определение концентрации палладия с нитрозо-R-солью

Метод основан на образовании окрашенного комплекса [PdCl4]2- с нитрозо-R-солью. Комплекс образуется при кипячении в водной среде с большим избытком реагента[38].

Приготовление растворов:

0.1% раствор нитрозо-R-соли.

0,5000 г нитроза-R-соли, взвешенной с точностью 0,0002 г, растворяют дистиллированной водой в мерной колбе, вместимостью 500 мл, после растворения доводят дистиллированной водой до метки. Готовый раствор хранится в колбе с притертой крышкой.

Стандартный раствор хлорида палладия (2).

А) навеску диметилглиоксимата палладия, полученного из палладий содержащего раствора по [38], массой 6,32249 г, взвешенного с точностью до 0,0002 г, высыпают в стакан на 600 мл, растворяют в 40 мл "царской водки" при нагревании (сначала дабавляют 30 мл HCl (конц.), а затем, по каплям, 10 мл HNO3.(конц.)). При поднятии «шапки» – интенсивно перемешивать. При необходимости добавляют еще "царской водки". После растворения, полученный раствор упаривают до влажных солей, прибавляют 10 мл концентрированной соляной кислоты и снова упаривают до влажных солей (упаривание необходимо проводить 2 раза). Затем добавляют дистиллированной воды (170-200 мл) и выпаривают до влажных солей 2-3 раза.

Полученные влажные соли хлорида палладия (2) переносят в мерную колбу на 1000 мл, доводят полученный раствор до метки дистиллированной водой. В одном мл данного раствора содержится 2,000 мг палладия.

Б) Навеску хлорида палладия, массой 3,33 растворяют в стакане на 600 мл, при нагревании в 40 мл "царской водки". Полученный раствор упаривают до влажных солей, растворяют в 10 мл соляной кислоты и снова упаривают, но до влажных солей. Последние операции повторяют дважды. Затем добавляют дистиллированной воды (170-200 мл) и выпаривают до влажных солей 2-3 раза.

Полученные влажные соли хлорида палладия (2) переносят в мерную колбу на 1000 мл, доводили полученный раствор до метки дистиллированной водой. В одном мл данного раствора содержится 2,000 мг палладия.

Проведение анализа.

В колбу на 250 мл помещают раствор хлорида палладия (2), содержащего от 30 до 250 мкг палладия, добавляют 10 мл 0,1% раствора нитрозо-R-соли) и доводят до кипения на нагревательной электрической плитке. После охлаждения до комнатной температуры раствор переносят в мерную колбу на 100 мл и доводят до метки дистиллированной водой, тщательно перемешивают. Оптическую плотность полученного раствора измеряют на приборе КФК-2-УКЛ.4.2. в кюветах толщиной 30 мм при длине волны 490 нм (сине-зеленый светофильтр). В качестве раствора сравнения применяют раствор, содержащий все реактивы кроме хлорида палладия. Количество палладия находят по предварительно построенному градуировочному графику.


2.2.2 Построение градуировочного графика

В шесть термостойких колб на 250 мл приливают 3,0; 5,0; 10,0; 15,0; 20,0; 25,0 мл стандартного раствора хлорида палладия (2) (С=10 мкг/мл), добавляют по 10 мл 0.1% раствора нитрозо-R-соли и доводят до кипения на электрической нагревательной плитке. Остывшие до комнатной температуры растворы переносят в мерные колбы на 100 мл и доводят до метки дистиллированной водой.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: