Химия жизни

Работа на тему:


«Химия жизни»


Химия жизни


2004


План


Введение

Химический взгляд на природу, истоки и современное состояние.

Предмет познания химической науки и ее структура

Взаимосвязь химии и физики

Взаимосвязь химии и биологии Заключение

Литература


Введение


Современная химия представляет собой широкий комп­лекс наук, постепенно сложившийся в ходе ее длительного исторического развития. Практическое знакомство человека с химическими процессами восходит к глубокой древности. В течение многих столетий теоретическое объяснение хими­ческих процессов основывалось на натурфилософском учении об элементах-качествах. В модифицированном виде оно по­служило основой для алхимии, возникшей примерно в III-IV вв. н.э. и стремившейся решить задачу превращения не­благородных металлов в благородные. Не добившись успеха в решении этой задачи, алхимики, тем не менее, выработали ряд приемов исследования веществ, открыли некоторые хи­мические соединения, чем в определенной степени способ­ствовали возникновению научной химии.

Натурфилософские воззрения лежали также в основе воз­никшей в XVI в. ятрохимии (предшественницы медицин­ской химии), стремившейся найти в химических препаратах средства лечения многочисленных болезней. В средние века получили ускоренное развитие химические производства: металлургия, стеклоделие, изготовление красителей. Это спо­собствовало выработке первых теоретических установок в развивавшемся химическом знании.

Собственно научная химия ведет свое начало со второй половины XVII в., когда Р. Бойль и его единомышленники дали первое научное определение понятия «химический эле­мент». Важной вехой на пути создания научной химии стало открытие благодаря работам М.В. Ломоносова и А. Лавуазье, закона сохранения массы при химических реакциях. Важ­ную роль в становлении химии как самостоятельной науки сыграло открытие в конце XVII — начале XIX вв. стехиометрических законов.

Разработка химических воззрений в XIX в. началась с создания Д. Дальтоном основ химической атомистики. Вско­ре А. Авогадро ввел понятие «молекула». Однако атомно-молекулярные представления утвердились в науке лишь в 60-х годах XIX в. В тот же период в познавательном прицеле химии заняла основополагающее место, наряду с составом, также структура веществ. Этому в решающей степени спо­собствовало создание А.М. Бутлеровым теории химического строения. К числу наиболее значительных вех развития на­учной химии и всего естествознания принадлежит открытие Д.И. Менделеевым периодического закона химических эле­ментов. В конце XIX — начале XX вв. к ведущим направле­ниям развития химии стало относиться изучение закономер­ностей химического процесса. Со второй половины XX в. в химии плодотворно развивается концепция, нацеленная на изучение возможностей использования в процессах получе­ния целевых продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем. Эволюционная химия обратилась к постижению путей получения наиболее высокоорганизованных химических систем, которые только возможны в настоящее время.

В химии исторически сложились, таким образом, четыре уровня изучения веществ: с позиций их состава, строения, химического действия и самоорганизации. Тем не менее, спе­цифика химии не может быть сведена только к исследова­нию веществ с позиций этого многоуровневого подхода. Наи­более специфичным для нее является постижение химизме взаимоотношений веществ. Причем осмысление феномена химизма, находит свое концентрированное выражение в со­временной трактовке предмета химии.


Химический взгляд на природу, истоки и современное состояние.


Химия — очень древняя наука. Существует несколько объясне­ний слова «химия». Согласно одной из имеющихся теорий, оно происходит от древнего названия Египта — Kham и, следователь­но, должно означать «египетское искусство». Согласно другой тео­рии, слово «химия» произошло от греческого слова cumoz (сок растения) и означает «искусство выделения соков». Этот сок мо­жет быть расплавленным металлом, так что при подобном расши­ренном толковании данного термина в него приходится включать и искусство металлургии.

С химией тесно связаны элементы стихий древнегреческой на­турфилософии, атомистика Левкиппа и Демокрита. Но, конечно, наибольший вклад в становление этой науки внесли египтяне. Имя первого из дошедших до нас химиков — Болос из Менда, жившего в дельте Нила на рубеже III и II вв. до н.э. К 300 г. н.э. египтянин Зосима написал энциклопедию, которая охватывала все собранные к тому времени знания по химии. Но химия, представленная в этом труде, еще не была наукой в полном смысле слова, а оставалась тесно связанной с древнеегипетской религией и не выходила в сво­ем развитии за пределы формирования феноменологического уров­ня. В химии выявлялись свойства, устанавливались закономерности между ними, сущность же явлений подменялась их мистической интерпретацией. Химию (химиков) искореняли и преследовали древ­неримские императоры, фанатики христианства: ученые изгонялись, книги их сжигались, сама наука запрещалась. Одни опасались, на­пример, того, что химики занимались получением золота; вторые преследовали ученых за тесную связь химии с древнеегипетской ре­лигией, которая, с точки зрения христианства, была язычеством.

Начиная с последних веков I тыс. до н.э. химия бурно развива­лась в арабском мире, а в первой половине нынешнего тысячеле­тия она получила широкое распространение в Западной Европе. С одной стороны, развитие химии в этот период шло вслед за раз­витием техники, однако, с другой стороны, она оставалась тесно связанной с религиозно-философской мыслью. В тот период химия существовала главным образом как алхимия.

В химии необходимо отметить, прежде всего, существование осо­бого «химического взгляда» на природу, который не может быть сведен к физическому, несмотря на все успехи физической химии в нынешнем столетии. То есть у химии давно были обнаружены качества некоторого особого типа. Так, согласно известному хими­ку А. А. Бутакову, химические реакции «нельзя объяснить только действием сил электрического притяжения и отталкивания. Их дей­ствием объясняется лишь физическая сторона химического процес­са. Химическая форма движения материи представляет собой про­цессы изменения частиц вещества, которые, в конечном счете, опре­деляются действием периодического закона». Подобного мнения придерживаются и многие другие ученые-химики. Известный рос­сийский физико-химик Н. Н. Семенов сводил основные отличия между физическим и химическим процессом к трем: «Истории сис­темы, отсутствию мгновенных параметров для скоростей химичес­ких реакций, возможности пользоваться равновесными параметра­ми для физических процессов и невозможности — для химических».

В химии хорошо используется подход индуктивный, гораздо ме­нее продуктивным здесь оказался дедуктивный подход. При дедук­тивном подходе вся совокупность известных естественно-научных фактов (не только химических, но и физических, биологических) представляется вытекающей из ряда основных законов. Такой под­ход, как правило, оказывается достаточно эффективным в физике и там, где могут быть использованы физические идеи (в химии). Индуктивный подход — это движение в обратном направлении, когда на основе химической фактологии выявляются более или менее общие закономерности (правила, законы), а затем уже со­здаются обобщенные модели, составляющие основу современной теоретической химии.

Важнейшие особенности современной химии таковы.

1. В химии, прежде всего в физической химии, появляются многочисленные самостоятельные научные дисциплины (хи­мическая термодинамика, химическая кинетика, электрохи­мия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия).

2. Химия активно интегрируется с остальными науками, ре­зультатом чего было появление биохимии, молекулярной био­логии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия — зако­номерности поведения химических элементов в земной коре. Биогеохимия — это наука о процессах перемещения, распре­деления, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогео­химии является В. И. Вернадский. Космохимия изучает хими­ческий состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам.

3. В химии появляются принципиально новые методы исследо­вания (структурный рентгеновский анализ, масс-спектроскопия, радиоспектроскопия и др.).

Химия способствовала интенсивному развитию некоторых на­правлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные опе­рации стали безболезненными и вообще возможными: 1) введе­ние в практику эфирного наркоза, а затем и других наркотических веществ; 2) использование антисептических средств для преду­преждения инфекции; 3) получение новых, не имеющихся в при­роде аллопластических материалов-полимеров.

В химии весьма отчетливо проявляется неравноценность отдель­ных химических элементов. Подавляющее большинство химичес­ких соединений (96% из более 8,5 тыс. известных в настоящее вре­мя) — это органические соединения. В их основе лежат 18 элементов), и большее распространение имеют всего 6 из них). Это происходит в силу того, что, во-первых, химические связи проч­ны (энергоемки) и, во-вторых, они еще и лабильны. Углерод как никакой другой элемент отвечает всем этим требованиям энерго­емкости и лабильности связей. Он совмещает в себе химические противоположности, реализуя их единство.

Однако подчеркнем, что материальная основа жизни не сво­дится ни к каким, даже самым сложным, химическим образова­ниям. Она не просто агрегат определенного химического состава, но одновременно и структура, имеющая функции и осуществляю­щая процессы. Поэтому невозможно дать жизни только функцио­нальное определение.

В последнее время химия все чаще предпринимает штурм со­седних с нею уровней структурной организации природы. Напри­мер, химия все более и более вторгается в биологию, пытаясь объяс­нить основы жизни.


Предмет познания химической науки и ее структура


Современная химия изучает превращения, при которых молекулы одного соединения обмениваются атомами с молекулами других соединений, распадаются на молекулы с мень­шим числом атомов, а также вступают в химические реак­ции, в результате которых образуются новые вещества. Ато­мы претерпевают в химических процессах некоторые изме­нения лишь в наружных электронных оболочках, атомное ядро и внутренние электронные оболочки при этом не изме­няются.

При определении предмета химии нередко акцентируют внимание на том, что его составляют, прежде всего, соединения атомов и превращения этих соединений, происходящее с разрывом одних и образованием других межатомных связей.

Различные химические науки отличаются тем, что они занимаются изучением либо различных классов соединений (такое различие положено в основу разграничения органи­ческой и неорганической химии), либо разных типов реак­ций (радиохимия, радиационная химия, каталитический синтез, химия полимеров), либо использованием разных ме­тодов исследования (физическая химия в ее различных на­правлениях). Отграничение одной химической дисциплины от другой, сохраняющее в нынешних условиях исторически сложившиеся разграничительные линии, имеет относитель­ный характер.

До конца XIX века химия в основном была целостной единой наукой. Внутреннее ее деление на органическую и неор­ганическую не нарушало этого единства. Но последовавшие вскоре многочисленные открытия, как в самой химии, так и в биологии, физике положили начало быстрой ее дифферен­циации.

Современная химическая наука, опираясь в» прочные те­оретические основы, непрерывно развивается вширь и вглубь. В частности, происходит открытие и изучение новых, каче­ственно различных дискретных химических частиц. Так, еще в первой половине XIX века при изучении электролиза были обнаружены ионы — особые частицы, образованные из ато­мов и молекул, но электрически заряженные. Ионы являют­ся структурными единицами многих кристаллов, кристалли­ческих решеток металлов, они существуют в атмосфере, в растворах и т.д.

В начале XX в. химики открыли радикалы как одну из активных форм химического вещества. Они образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, что связано с наличием одиночных (неспаренных) электронов, объясняющих их исключительную химическую активность.

К особым формам химического вещества относятся также макромолекулы. Они состоят из сотен и тысяч атомов и вслед­ствие этого приобретают в отличие от обычной молекулы качественно новые свойства.

Характерный для новейшей химии, как и для всей науки XX в., процесс глубокой внутренней дифференциации в значительной степени связан с открытием этого качественного многообразия химических веществ. Их строение, превраще­ния и свойства стали предметом изучения специальных раз­делов химии: электрохимии, химической кинетики, химии полимеров, химии комплексных соединений, коллоидной химии, химии высокомолекулярных соединений.

Уже к началу XX в. внутри самой химии четко различа­ются общая и неорганическая химия, и органическая хи­мия. Предметом изучения общей и тесно связанной с ней неорганической химии стали химические элементы, образу­емые ими простейшие неорганические соединения и их об­щие законы (прежде всего Периодический закон Д.И. Мен­делеева).

Сильный толчок развитию неорганической химии дали проникновение в недра атома и изучение ядерных процессов. Поиски элементов, наиболее пригодных для расщепления в ядерных реакторах, способствовали исследованию малоизу­ченных и синтезу новых элементов с помощью ядерных ре­акций. Изучением их свойств, а также физико-химических основ и химических свойств радиоактивных изотопов, мето­дикой их выделения и концентрации занялась радиохимия, возникшая во второй четверти XX в.

Органическая химия окончательно сложилась в самостоя­тельную науку во второй половине XIXв. Этому способство­вало получение большого эмпирического и теоретического материала о соединениях углерода и его производных. Опре­деляющим фактором для всех органических соединений яв­ляются особенности валентного состояния углерода — спо­собность его атомов связываться между собой как одинар­ной, так и двойной, тройной связью в длинные линейные и разветвленные цепи. Благодаря бесконечному многообразию форм сцепления углеродных атомов, наличию изомерии и гомологических рядов почти во всех классах органических соединений возможности получения этих соединений прак­тически безграничны.

В XX в. многие разделы органической химии стали по­степенно превращаться в большие, относительно самостоя­тельные ветви со своими объектами изучения. Так появи­лись химия элементоорганических соединений, химия по­лимеров, химия высокомолекулярных соединений, химия антибиотиков, красителей, душистых соединений, фарма­кохимия и т.д.

В конце XX в. возникает химия металлоорганических со­единений, то есть соединений, содержащих одну (или бо­лее) прямую связь металла с углеродом. До окончания века были открыты органические соединения ртути, кадмия, цин­ка, свинца и др. В настоящее время получены углеродистые соединения со значительным содержанием не только метал­лов, но и неметаллов (фосфор, бор, кремний, мышьяк и т.д.). Теперь эту область химии стали называть химией элементо­органических соединений, она находится на стыке органи­ческой и неорганической химии.

Самостоятельной областью химии является наука о мето­дах определения состава вещества — аналитическая химия. Ее основная задача — определение химических элементов или их соединений, входящих в состав исследуемого вещества, — решается путем анализа. Без современных методов анализа был бы невозможен синтез новых химических соединений, эффективный постоянный контроль за ходом технологиче­ского процесса и качеством получаемых продуктов.

Химия наших дней составляет одну из наиболее обширных областей человеческих знаний и играет исключительно важ­ную роль в народном хозяйстве. Объекты и методы исследова­ния химии настолько разнообразны, что многие ее разделы являются по существу самостоятельными научными дисцип­линами. Современную химию принято подразделять в наибо­лее общем плане, по крайней мере, на 5 разделов: неоргани­ческую, органическую, физическую, аналитическую и химию высокомолекулярных соединений. Однако четких границ меж­ду этими разделами не существует. Например, координацион­ные и элементоорганические соединения представляют собой объекты, находящиеся в сфере исследований, как неоргани­ческой, так и органической химии. Развитие же этих разде­лов невозможно без широкого использования методов и пред­ставлений физической и аналитической химии.

К важнейшим особенностям современной химии отно­сятся:

1. Дифференциация основных разделов химии на отдельные, во многом самостоятельные научные дисциплины. Эта дифференциация основана на различии объектов и мето­дов исследования. Так, на значительное число быстро раз­вивающихся дисциплин подразделяется физическая хи­мия.

2. Интеграция химии с другими науками. В результате этого процесса возникли биохимия, биоорганическая химия и молекулярная биология, изучающие химические процес­сы в живых организмах. На границе химии и геологии развивается геохимия, исследующая закономерности по­ведения химических элементов в земной коре. Задачи космохимии — изучение особенностей элементного состава космических тел (планет и метеоритов) и различных со­единений, содержащихся в этих объектах.

3. Появление новых, главным образом, физико-химических в физических методов исследования (структурный рентгеновский анализ, масс-спектроскопия, методы радиоспект­роскопии и др.)


Взаимосвязь химии и физики


Наряду с процессами дифференциации самой химической науки, в настоящее время идут в интеграционные процессы химии с другими отраслями естествознания. Особенно ин­тенсивно развиваются взаимосвязи между физикой и хими­ей. Этот процесс сопровождается возникновением все новых и новых смежных физико-химических отраслей знания.

Вся история взаимодействия химии я физики полна при­меров обмена идеями, объектами и методами исследования. На разных этапах своего развития физика снабжала химию понятиями в теоретическими концепциями, оказавшими сильное воздействие на развитие химии. При этом, чем боль­ше усложнялись химические исследования, тем больше ап­паратура и методы расчетов физики проникали в химию. Необходимость измерения тепловых эффектов реакции, раз­витие спектрального и рентгеноструктурного анализа, изучение изотопов и радиоактивных химических элементов, крис­таллических решеток вещества, молекулярных структур по­требовали создания и привели к использованию сложнейших физических приборов эспектроскопов, масс-спектрографов, дифракционных решеток, электронных микроскопов и т.д.

Развитие современной науки подтвердило глубокую связь между физикой и химией. Связь эта носит генетический ха­рактер, то есть образование атомов химических элементов, соединение их в молекулы вещества произошло на опреде­ленном этапе развития неорганического мира. Также эта связь основывается на общности строения конкретных видов мате­рии, в том числе и молекул веществ, состоящих в конечном итоге из одних и тех же химических элементов, атомов и элементарных частиц. Возникновение химической формы движения в природе вызвало дальнейшее развитие представ­лений об электромагнитном взаимодействии, изучаемом фи­зикой. На основе периодического закона ныне осуществляет­ся прогресс не только в химии, но и в ядерной физике, на границе которой возникли такие смешанные физико-хими­ческие теории, как химия изотопов, радиационная химия.

Химия и физика изучают практически одни и те же объек­ты, но только каждая из них видит в этих объектах свою сторону, свой предмет изучения. Так, молекула является пред­метом изучения не только химии, но и молекулярной физи­ки. Если первая изучает ее с точки зрения закономерностей образования, состава, химических свойств, связей, условий ее диссоциации на составляющие атомы, то последняя стати­стически изучает поведение масс молекул, обусловливающее тепловые явления, различные агрегатные состояния, перехо­ды из газообразной в жидкую и твердую фазы и обратно, явления, не связанные с изменением состава молекул и их внутреннего химического строения. Сопровождение каждой химической реакции механическим перемещением масс мо­лекул реагентов, выделение или поглощение тепла за счет разрыва или образования связей в новых молекулах убеди­тельно свидетельствуют о тесной связи химических и физи­ческих явлений. Так, энергетика химических процессов тес­но связана с законами термодинамики. Химические реак­ции, протекающие с выделением энергии обычно в виде теп­ла и света, называются экзотермическими. Существуют так­же эндотермические реакции, протекающие с поглощением энергии. Все сказанное не противоречит законам термодинамики: в случае горения энергия высвобождается одновремен­но с уменьшением внутренней энергии системы. В эндотер­мических реакциях идет повышение внутренней энергии си­стемы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы. Он измеряется в килоджоулях на моль (кДж/моль).

Еще один пример. Частным случаем первого начала тер­модинамики является закон Гесса. Он гласит, что тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. Закон Гесса позволяет вычислить тепловой эффект реакции в тех случаях, когда его непосредственное измере­ние почему-либо неосуществимо.

С возникновением теории относительности, квантовой механики и учения об элементарных частицах раскрылись еще более глубокие связи между физикой и химией. Оказа­лось, что разгадка объяснения существа свойств химических соединений, самого механизма превращения веществ лежит в строении атомов, в квантово-механических процессах его элементарных частиц и особенно электронов внешней обо­лочки, Именно новейшая физика сумела решить такие воп­росы химии, как природа химической связи, особенности химического строения молекул органических и неорганичес­ких соединений и т.д.

В сфере соприкосновения физики и химии возник и ус­пешно развивается такой сравнительно молодой раздел из числа основных разделов химии как физическая химия, ко­торая оформилась в конце XIX в. в результате успешных попыток количественного изучения физических свойств хи­мических веществ и смесей, теоретического объяснения мо­лекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева (откры­тие Периодического закона), Вант-Гоффа (термодинамика химических процессов), С. Аррениуса (теория электролити­ческой диссоциации) и т.д. Предметом ее изучения стали об­щетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физически­ми свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Сейчас физхимия — это разносторонне разветвленная наука, тесно связывающая физику и химию.

В самой физической химии к настоящему времени выде­лились и вполне сложились в качестве самостоятельных раз­делов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. выделилась также в само­стоятельную науку выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с ин­тенсивной разработкой проблем ядерной энергии возникли и получили большое развитие новейшие отрасли физической Химии — химия высоких энергий, радиационная химия (пред­метом ее изучения являются реакции, протекающие под дей­ствием ионизирующего излучения), химия изотопов.

Физическая химия рассматривается сейчас как наиболее широкий общетеоретический фундамент всей химической науки. Многие ее учения и теории имеют большое значение для развития неорганической и особенно органической хи­мии. С возникновением физической химии изучение веще­ства стало осуществляться не только традиционными хими­ческими методами исследования, не только с точки зрения его состава и свойств, но и со стороны структуры, термодина­мики и кинетики химического процесса, а также со стороны связи и зависимости последнего от воздействия явлений, при­сущих другим формам движения (световое и радиационное облучение, световое и тепловое воздействие и т.д.).

Примечательно, что в первой половине XX в. сложилась пограничная между химией и новыми разделами физики (кван­товая механика, электронная теория атомов и молекул) на­ука, которую стали позднее называть химической физикой. Она широко применила теоретические и экспериментальные методы новейшей физики к исследованию строения химиче­ских элементов и соединений и особенно механизма реакций. Химическая физика изучает взаимосвязь и взаимопереход химической и субатомной форм движения материи.

В иерархии основных наук, данной Ф. Энгельсом, химия непосредственно соседствует с физикой. Это соседство и обес­печило ту быстроту и глубину, с которой многие разделы физики плодотворно вклиниваются в химию. Химия грани­чит, с одной стороны, с макроскопической физикой — термо­динамикой, физикой сплошных сред, а с другой — с микро­физикой — статической физикой, квантовой механикой.

Общеизвестно, сколь плодотворными эти контакты оказа­лись для химии. Термодинамика породила химическую термодинамику — учение о химических равновесиях. Статиче­ская физика легла в основу химической кинетики — учения о скоростях химических превращений. Квантовая механика вскрыла сущность Периодического закона Менделеева. Со­временная теория химического строения и реакционной спо­собности — это квантовая химия, т.е. приложение принципов квантовой механики к исследованию молекул и «X превра­щений.

Еще одним свидетельством плодотворности влияния фи­зики на химическую науку является все расширяющееся применение физических методов в химических исследовани­ях. Поразительный прогресс в этой области особенно отчет-диво виден на примере спектроскопических методов. Еще совсем недавно из бесконечного диапазона электромагнитных излучений химики использовали лишь узкую область види­мого и примыкающего к нему участков инфракрасного и уль­трафиолетового диапазонов. Открытие физиками явления магнитного резонансного поглощения привело к появлению спектроскопии ядерного магнитного резонанса, наиболее ин­формативного современного аналитического метода и метода изучения электронного строения молекул, и спектроскопии электронного парамагнитного резонанса, уникального мето­да изучения нестабильных промежуточных частиц - свобод­ных радикалов. В коротковолновой области электромагнит­ных излучений возникла рентгеновская и гамма-резонанс­ная спектроскопия, обязанная своим появлением открытию Мессбауэра. Освоение синхротронного излучения открыло новые перспективы развития этого высокоэнергетического раздела спектроскопии.

Казалось бы, освоен весь электромагнитный диапазон, и в этой области трудно ждать дальнейшего прогресса. Однако появились лазеры — уникальные по своей спектральной ин­тенсивности источники — и вместе с ними принципиально новые аналитические возможности. Среди них можно назвать лазерный магнитный резонанс — быстро развивающийся вы­сокочувствительный метод регистрации радикалов в газе. Другая, поистине фантастическая возможность — это штуч­ная регистрация атомов с помощью лазера — методика, основная на селективном возбуждении, позволяющая зарегис­трировать в кювете всего несколько атомов посторонней при-Л0еи. Поразительные возможности для изучения механизмов радикальных реакций дало открытие явления химической поляризации ядер.

Сейчас трудно назвать область современной физики, кото­рая бы прямо или косвенно не оказывала влияние на химию. Взять, например, далекую от мира молекул, построенного из ядер и электронов, физику нестабильных элементарных час­тиц. Может показаться удивительным, что на специальных международных конференциях обсуждается химическое по­ведение атомов, имеющих в своем составе позитрон или мюон, которые, в принципе, не могут дать устойчивых соединений. Однако уникальная информация о сверхбыстрых реакциях, Которую такие атомы позволяют получать, полностью оправ­дывает этот интерес.

Оглядываясь на историю взаимоотношений физики и хи­мии, мы видим, что физика играла важную, подчас решаю­щую роль в развитии теоретических концепций и методов исследования в химии. Степень признания этой роли можно оценить, просмотрев, например, список лауреатов Нобелев­ской премии по химии. Не менее трети в этом списке — авто­ры крупнейших достижений в области физической химии. Среди них — те, кто открыл радиоактивность и изотопы (Резерфорд, М. Кюри, Содди, Астон, Жолио-Кюри и др.), зало­жил основы квантовой химии (Полинг и Малликен) и совре­менной химической кинетики (Хиншелвуд и Семенов), раз­вил новые физические методы (Дебай, Гейеровский, Эйген, Норриш и Портер, Герцберг).

Наконец, следует иметь в виду и то решающее значение, которое начинает играть в развитии науки производитель­ность труда ученого. Физические методы сыграли и продол­жают играть в этом отношении в химии революционизирую­щую роль. Достаточно сравнить, например, время, которое затрачивал химик-органик на установление строения синте­зированного соединения химическими средствами и которое он затрачивает теперь, владея арсеналом физических мето­дов. Несомненно, что этот резерв применения достижений физики используется далеко не достаточно.

Подведем некоторые итоги. Мы видим, что физика во все большем масштабе и все более плодотворно вторгается в хи­мию. Физика вскрывает сущность качественных химических закономерностей, снабжает химию совершенными инструмен­тами исследования. Растет относительный объем физической химии, и не видно причин, которые могут замедлить этот рост.


Взаимосвязь химии и биологии


Общеизвестно, что химия и биология долгое время шли каж­дая своим собственным путем, хотя давней мечтой химиков было создание в лабораторных условиях живого организма.

Резкое укрепление взаимосвязи химии с биологией про­изошло в результате создания А.М. Бутлеровым теория хими­ческого строения органических соединений. Руководствуясь этой теорией, химики-органики вступили в соревнование с природой. Последующие поколения химиков проявили большую изобретательность, труд, фантазию и творческий поисках направленном синтезе вещества. Их замыслом было не только подражать природе, они хотели превзойти ее. И сегодня мы можем уверенно заявить, что во многих случаях это удалось.

Поступательное развитие науки XIX в., приведшее к рас­крытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами прак­тические возможности совместной работы над химическими проблемами учения о клетке, над вопросами о характере хи­мических процессов в живых тканях, об обусловленности биологических функций химическими реакциями.

Если посмотреть на обмен веществ в организме с чисто хи­мической точки зрения, как это сделал А.И. Опарин, мы уви­дим совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между добей во времени, протекают не случайно, а в строгой последовательности, в результате чего образуются длинные цепи ре­акций. И этот порядок закономерно направлен, к постоянно­му самосохранению и самовоспроизведению всей живой систе­мы в целом в данных условиях окружающей среды.

Словом, такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реа­гировать на изменения внешней среды, связаны с определен­ными комплексами химических превращений.

Значение химии среди наук, изучающих жизнь, исклю­чительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемогло­бина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена струк­тура нуклеиновых Кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процес­сов, функций живого лежат химические механизмы. Все

функции и процессы, происходящие в живом организме, ока­зывается возможным изложить на языке химии, в виде кон­кретных химических процессов.

Разумеется, было бы неверным сводить явления жизни к химическим процессам. Это было бы грубым механистиче­ским упрощением. И ярким свидетельством этого выступает специфика химических процессов в живых системах по срав­нению с неживыми. Изучение этой специфики раскрывает единство и взаимосвязь химической и биологической форм движения материи. Об этом же говорят и другие науки, воз­никшие на стыке биологии, химии и физики: биохимия — наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия — наука о строении, функциях и путях синтеза соединений, составляющих жи­вые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиа­ционная биология.

Крупнейшими достижениями этого процесса стали опре­деление химических продуктов клеточного метаболизма (об­мена веществ в растениях, животных, микроорганизмах), установление биологических путей и циклов биосинтеза этих продуктов; был реализован их искусственный синтез, сдела­но открытие материальных основ регулятивного и наслед­ственного молекулярного механизма, а также в значитель­ной степени выяснено значение химических процессов» энер­гетике процессов клетки и вообще живых организмов.

Ныне для химии особенно важным становится примене­ние биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее со­вершенных механизмов и процессов. На этом пути есть уже определенные достижения.

Более столетия назад ученые поняли, что основой исклю­чительной эффективности биологических процессов являет­ся биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. В ней появится новое управление химическими процессами, где начнут применяться принципы, синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые дале­ко превзойдут существующие в нашей промышленности.

Несмотря на то, что ферменты обладают общими свойства­ми, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рам­ках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в не­органическом мире сталкиваются с серьезными ограничени­ями. Пока речь может идти только о моделировании некото­рых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а так­же частично-практического применения выделенных фермен­тов для ускорения некоторых химических реакций.

Здесь самым перспективным направлением, очевидно, являются исследования, ориентированные на применение принципов биокатализа в химии и химической технологии, для чего нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермен­та, клетки и даже организма.

Теория саморазвития элементарных открытых каталитиче­ских систем, в самом общем виде выдвинутая профессором МГУ А.П. Руденко в 1964 г., является общей теорией химической эволюции и биогенеза. Она решает вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах хи­мической эволюции, об отборе элементов и структур и их при­чинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции.

Теоретическим ядром этой теории является положение о том, что химическая эволюция представляет собой самораз­витие каталитических систем

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: