Xreferat.com » Рефераты по химии » Расчёт многокорпусной выпарной установки

Расчёт многокорпусной выпарной установки

= 18,24 °С

4) В соответствии с Приложением 2 примем ориентировочное значение коэффициента теплопередачи Кор = 800 Вт/(м2 ∙ К). Тогда ориентировочное значение требуемой поверхности составит:

Расчёт многокорпусной выпарной установки м2

В соответствии с Приложением 3, поверхность, близкую к ориентировочной могут иметь теплообменники с высотой труб Н = 4,0 м и диаметром кожуха D = 800 мм (F = 127 м2) или с высотой труб Н = 6,0 м и диаметром кожуха D = 600 мм (F = 126 м2).

5) Уточнённый расчёт поверхности теплопередачи.

Примем в качестве первого варианта теплообменник с высотой труб Н = 4,0 м, диаметром кожуха D = 1000 мм и поверхностью теплопередачи F = 127 м2. Выполним его уточнённый расчёт, решив уравнение (34).

В качестве первого приближения примем ориентировочное значение удельной тепловой нагрузки:

Расчёт многокорпусной выпарной установки Вт/м2

Для определения f(q1) необходимо рассчитать коэффициенты А и В:

Расчёт многокорпусной выпарной установки

Расчёт многокорпусной выпарной установки

Толщина труб 2,0 мм, материал – нержавеющая сталь; λст = 17,5 Вт/(м ∙ К). Сумма термических сопротивлений стенки и загрязнений (термическим сопротивлением со стороны греющего пара можно пренебречь) равна:


Расчёт многокорпусной выпарной установки м2 ∙ К/Вт


Тогда

Расчёт многокорпусной выпарной установки

Примем второе значение q2 = 20000 Вт/м2 получим:

Расчёт многокорпусной выпарной установки

Третье, уточнённое значение q3, определим в точке пересечения с осью абсцисс хорды, проведённой из точки 1 в точку 2 на графике зависимости f(q) от q:


Расчёт многокорпусной выпарной установки (40)


Получим

Расчёт многокорпусной выпарной установки Вт/м2

Расчёт многокорпусной выпарной установки

Такую точность определения корня уравнения (34) можно считать достаточной, и q = 20235,4 Вт/м2 можно считать истинной удельной тепловой нагрузкой. Тогда требуемая поверхность составит:

Расчёт многокорпусной выпарной установки м2

В выбранном теплообменнике запас поверхности составит:

Расчёт многокорпусной выпарной установки %

Масса аппарата: М1 = 3950 кг (см. Приложение 4).

Вариант 2. рассчитаем также теплообменник с высотой труб 6,0 м, диаметром кожуха 600 мм и номинальной поверхностью 126 м2.

Для этого уточним значение коэффициента В:

Расчёт многокорпусной выпарной установкиРасчёт многокорпусной выпарной установки

Пусть Расчёт многокорпусной выпарной установки Вт/м2.

Тогда Расчёт многокорпусной выпарной установки

Пусть q2 = 25000 Вт/м2.

Тогда

Расчёт многокорпусной выпарной установки

Получим

Расчёт многокорпусной выпарной установки Вт/м2

Расчёт многокорпусной выпарной установки

Требуемая поверхность: Расчёт многокорпусной выпарной установки м2

В выбранном теплообменнике запас поверхности составляет:

Расчёт многокорпусной выпарной установки %

Масса аппарата: М2 = 3130 кг (см. Приложение 4).

У последнего аппарата масса значительно меньше, поэтому выбираем его.

Критическую удельную тепловую нагрузку, при которой пузырьковое кипение переходит в плёночное, а коэффициент теплоотдачи принимает максимальное значение, можно оценить по формуле, справедливой для кипения в большом объёме:

Расчёт многокорпусной выпарной установки (41)


Расчёт многокорпусной выпарной установки кВт/м2

Следовательно, в рассчитанных аппаратах режим кипения будет пузырьковым. Коэффициенты теплоотдачи и теплопередачи в выбранном варианте соответственно равны:

Расчёт многокорпусной выпарной установки Вт/(м2 ∙ К)

Расчёт многокорпусной выпарной установки Вт/(м2 ∙ К)

Расчёт многокорпусной выпарной установки Вт/(м2 ∙ К)

Таким образом, был выбран теплообменник-испаритель со следующими характеристиками [1]:


Таблица 18 Характеристики теплообменника-испарителя

Диаметр кожуха, мм Диаметр труб, мм Общее число труб, шт Поверхность теплообмена (в м3) при длине труб 6,0 м Масса, кг
600 25Ч2 334 126 3130

8. Расчёт вспомогательного оборудования выпарной установки


8.1 Расчёт конденсатоотводчиков


Для отвода конденсата, образующегося при работе теплообменных аппаратов, в зависимости от давления пара, применяют различные виды устройств. При давлении на выходе не менее 0,1 МПа и противодавлении не более 50 % давления на выходе устойчиво работают термодинамические конденсатоотводчики. При начальном давлении не менее 0,06 Мпа рекомендуется устанавливать конденсатоотводчики поплавковые муфтовые, которые надёжно работают при перепаде давления более 0,05 МПа при постоянном и переменных режимах расходования пара. При ∆Р от 0,03 до 1,3 МПа для автоматического удаления конденсата из различных пароприемников пригодны конденсационные горшки с открытым поплавком. При давлении пара до 0,03 МПа для отвода конденсата могут применяться гидравлические затворы (петли).


8.1.1 Расчёт конденсатоотводчиков для первого корпуса выпарной установки

Из условия видно, что Рг = 0,4 МПа, значит, применим термодинамические конденсатоотводчики.

1) Расчётное количество конденсата после выпарного аппарата:

G = 1,2 ∙ Gг = 1,2 ∙ 0,83 = 0,996 кг/с или 3,59 т/ч.

2) Давление пара перед конденсатоотводчиком.

P = 0,95 ∙ Pг = 0,95 ∙ 0,4 = 0,38 МПа или 3,87 атм.

3) Давление пара после конденсатоотводчика.

P’ = 0,01 МПа или 0,1 атм, т.к. у нас свободный слив конденсата.

4) Условная пропускная способность K∙Vy.

Расчёт многокорпусной выпарной установки (42)


∆P = P – P’ = 0,38 – 0,01 = 0,379 МПа или 3,77 атм.

Тогда:

Расчёт многокорпусной выпарной установки т/ч

Подходящей условной пропускной способностью конденсатоотводчика 45ч12нж является 0,9 т/ч, поэтому установим 4 конденсатоотводчика с такой пропускной способностью.

Размеры данного конденсатоотводчика: Dy = 25 мм, L = 100 мм, L1 = 12 мм, Hmax = 53 мм, Н1 = 30 мм, S = 40мм, S1 = 21 мм, D0 = 60 мм.


8.1.2 Расчёт конденсатоотводчиков для второго корпуса выпарной установки

Давление греющего пара во втором корпусе – 0,277 МПа, значит, используем термодинамические конденсатоотводчики.

1) Расчётное количество конденсата после выпарного аппарата:

G = 1,2 ∙ Gг = 1,2 ∙ 0,63 = 0,756 кг/с или 2,72 т/ч.

2) Давление пара перед конденсатоотводчиком.

P = 0,95 ∙ Pг = 0,95 ∙ 0,277 = 0,263 МПа или 2,682 атм.

3) Давление пара после конденсатоотводчика.

P’ = 0,01 МПа или 0,1 атм, т.к. у нас свободный слив конденсата.

4) Условная пропускная способность K∙Vy.


Расчёт многокорпусной выпарной установки


∆P = P – P’ = 0,263 – 0,01 = 0,253 МПа или 2,582 атм.

Тогда:Расчёт многокорпусной выпарной установки т/ч

Подходящей условной пропускной способностью конденсатоотводчика 45ч12нж является 0,9 т/ч, поэтому установим 4 конденсатоотводчика с такой пропускной способностью.


8.1.3 Расчёт конденсатоотводчиков для третьего корпуса выпарной установки

Давление греющего пара во втором корпусе – 0,094 МПа, значит используем поплавковый муфтовый конденсатоотводчик.

1) Расчётное количество конденсата после выпарного аппарата.

G = 1,2 ∙ Gг = 1,2 ∙ 0,43 = 0,52 кг/с или 1,86 т/ч.

2) Давление пара перед конденсатоотводчиком.

P = 0,95 ∙ Pг = 0,95 ∙ 0,153 = 0,145 МПа или 1,48 атм.

3) Давление пара после конденсатоотводчика.

P’ = 0,01 МПа или 0,1 атм, т.к. у нас свободный слив конденсата.

4) Перепад давления на конденсатоотводчике.

∆P = P – P’ = 0,153 – 0,01 = 0,143 МПа или 1,38 атм.

5)Условная пропускная способность K∙Vy.


Расчёт многокорпусной выпарной установки => Расчёт многокорпусной выпарной установки (43)


ρ = 1323 кг/м3 или 1,323 г/см3.

Расчёт многокорпусной выпарной установки т/ч

Выбираем конденсатоотводчик типа 45ч12нж с KV = 0,9 т/ч – 4 шт.

Размеры данного конденсатоотводчика: Dy = 25 мм, L = 100 мм, L1 = 12 мм, Hmax = 53 мм, Н1 = 30 мм, S = 40мм, S1 = 21 мм, D0 = 60 мм.


8.2 Расчёт ёмкостей


Необходимо рассчитать две ёмкости: для начального и упаренного раствора.

Вычислим объём ёмкости для исходного (начального) раствора.


Расчёт многокорпусной выпарной установки (44)


где τ – время, τ = 4 часа; ρ – начальная плотность Na2SO4 при 20 °С, ρ = 1071 кг/м3.

Расчёт многокорпусной выпарной установки м3

По ГОСТ 9931 – 79 (С. 334 [10]) выбираем ёмкость ГЭЭ, исполнение 2 – горизонтальная с эллиптическим днищем и крышкой. V = 63 м3, Dв = 3000 мм; l = 7920 мм; Fв = 94,1 м2.

Рассчитаем ёмкость для упаренного раствора:


Расчёт многокорпусной выпарной установки (45)


Расчёт многокорпусной выпарной установки кг/ч

Расчёт многокорпусной выпарной установки м3

По ГОСТ 9931 – 79 выбираем ёмкость ГЭЭ, исполнение 2 – горизонтальная с эллиптическим днищем и крышкой. V = 12,5 м3, Dв = 1800 мм; l = 4315 мм; Fв = 31,4 м2.

Ёмкости выбираются из расчёта 4 часа непрерывной работы при отсутствии поступления раствора + 20 % – запас на переполнение ёмкости.


9. Механические расчёты основных узлов и деталей выпарного аппарата


Одним из определяющих параметров при расчётах на прочность узлов и деталей химических аппаратов, работающих под избыточным давлением, является давление среды в аппарате. Расчёт аппарата на прочность производится для рабочего давления при нормальном протекании технологического процесса.

Другим важным параметром при расчёте на прочность узлов и деталей является их температура. При температуре среды в аппарате ниже 250 °С расчётная температура стенки и деталей принимается равной максимально возможной при эксплуатации температуре среды.

Расчёту на прочность предшествует выбор конструкционного материала в зависимости от необходимой химической стойкости, требуемой прочности, дефицитности и стоимости материала и других факторов. Прочностные характеристики конструкционного материала при расчётной температуре определяются допускаемыми напряжениями в узлах и деталях.

Разрушающее действие среды на материал учитывается введением прибавки Ск к номинальной толщине детали:


Ск = П ∙ τа = 10 ∙ 0,1 = 1 мм (46)


где τа – амортизационный срок службы аппарата (можно принять τа = 10 лет); П – коррозионная проницаемость, мм/год. При отсутствии данных о проницаемости принимают П = 0,1 мм/год.


9.1 Расчёт толщины обечаек


Главным составным элементом корпуса выпарного аппарата является обечайка. В химическом аппаратостроении наиболее распространены цилиндрические обечайки, отличающиеся простотой изготовления, рациональным расходом материала и достаточной прочностью. Цилиндрические обечайки из стали, сплавов из основы цветных металлов и других пластичных материалов при избыточном давлении среды в аппарате до 10 МПа изготовляют вальцовкой листов с последующей сваркой стыков.

Необходимо определить толщину стенки сварной цилиндрической обечайки корпуса выпарного аппарата, работающего под внутренним избыточным давлением Р = 0,6 МПа, при следующих данных: материал обечайки – сталь марки Х18Н10Т, проницаемость П ≤ 0,1 мм/год, запас на коррозию Ск = 1 мм; среда – насыщенный водяной пар при абсолютном давлении 0,4 МПа и температуре 143,5 °С. Внутренний диаметр обечайки Dв = 1,8 м, отверстия в обечайке укреплённые, сварной шов стыковой двухсторонний (φш = 0,95). Допускаемое напряжение для стали марки 12Х18Н9Т при 150 °С определим по графику: σд = 236 МН/м2.

Толщина обечайки с учётом запаса на коррозию и округлением рассчитывается по формуле:


Расчёт многокорпусной выпарной установки (47)


где D – наружный или внутренний диаметр обечайки, м; σд – допускаемое напряжение на растяжение для материала обечайки, МН/м2. Коэффициент φ учитывает ослабление обечайки из-за сварного шва и наличия неукреплённых отверстий. При отсутствии неукреплённых отверстий φ = φш, причём для стальных обечаек принимают φш =0,7 – 1,0, в зависимости от типа сварного шва. Прибавка толщины с учётом коррозии Ск определяется формулой (41), а полученное суммарное значение толщины округляется до ближайшего нормализованного значения добавлением Сокр.


Расчёт многокорпусной выпарной установки м (48)


Границей применимости формулы (42) является условие:


Расчёт многокорпусной выпарной установки (49)


Расчёт многокорпусной выпарной установки

То есть условие выполняется.

Допускаемое избыточное давление в обечайке можно определить из формулы (42):


Расчёт многокорпусной выпарной установки МПа [1].


9.2 Расчёт толщины днищ


Составными элементами корпусов выпарных аппаратов являются днища, которые обычно изготовляются из того же материала, что и обечайки, и привариваются к ней. Днище неразъёмно ограничивает корпус вертикального аппарата снизу и сверху. Форма днища может быть эллиптической, сферической, конической и плоской. Наиболее рациональной формой днищ для цилиндрических аппаратов является эллиптическая. Эллиптические днища изготовляются из листового проката штамповкой и могут использоваться в аппаратах с избыточным давлением до 10 МПа толщину стандартных эллиптических днищ, работающих под внутренним избыточным давлением Р, рассчитывают по формуле (42), которая справедлива при условии:

Расчёт многокорпусной выпарной установки (50)


Необходимо определить толщину стенки верхнего стандартного отбортованного эллиптического днища для обечайки выпарного аппарата, рассчитанной выше. Днище сварное (φш = 0,95); в нём имеется центрально расположенное неукреплённое отверстие dо = 0,2 м. Коэффициент ослабления днища отверстием определяется по формуле:


Расчёт многокорпусной выпарной установки (51)


Поскольку φо < φш, примем φ = φо = 0,889.

Толщина днища равна:

Расчёт многокорпусной выпарной установки м

Расчёт многокорпусной выпарной установки

То есть условие выполняется.

Конические днища применяют в тех случаях, когда это обусловлено технологическим процессом, исключающим применение эллиптических или плоских днищ, например, при необходимости непрерывного или периодического удаления вязких жидкостей, суспензий, сыпучих или кусковых материалов через нижний штуцер. Угол конуса при вершине в днищах обычно принимают равным 60° или 90°.

Расчёт нижнего конического днища с торроидальным переходом (отбортовкой), нагруженных внутренним избыточным давлением, рассчитывают по формуле:


Расчёт многокорпусной выпарной установки (52)


Угол α = 45° - половина угла при вершине конуса cosα = 0,71.

Расчёт многокорпусной выпарной установки м

Эта формула справедлива при условии:


Расчёт многокорпусной выпарной установки (53)


Расчёт многокорпусной выпарной установки, Расчёт многокорпусной выпарной установки, следовательно условие выполняется.

Допускаемое избыточное давление для конических днищ определяется из формулы (46):


Расчёт многокорпусной выпарной установки МПа [1].


9.3 Определение фланцевых соединений и крышек


Среди разъёмных неподвижных соединений в химическом аппаратостроении наибольшее распространение получили фланцевые соединения. При конструирования аппаратов следует применять стандартные и нормализованные фланцы, например, по ГОСТ 12815 – 67 – ГОСТ 12839 – 67, ГОСТ 1233 – 67 – ГОСТ 1235 – 67. Конструкция фланцевого соединения принимается в зависимости от рабочих параметров аппарата: при давлении Р ≤ 2,5 МПа, температуре t ≤ 300 °С и числе циклов нагружения за время эксплуатации до 2000 применяются плоские приварные фланцы. Во фланцевых соединениях при Р ≤ 2,5 МПа, t ≤ 300 °С применяются болты.

Таблица 19 Основные размеры фланцевого соединения [10]

D, мм Ру, Мпа Размеры, мм Число отверстий z


D1 D2 D3 h a a1 s d
1800 0,6 1930 1890 1848 1860 1845 60 17,5 14 10 23 68

Болты подбираются по ГОСТ 7798 – 70 из стали 12Х18Н10Т [10].


9.4 Расчет аппарата на ветровую нагрузку


Расчетом проверяется прочность и устойчивость аппарата, устанавливаемого на открытой площадке при действии на него ветра. В частности, определяются размеры наиболее ответственного узла аппарата - опоры и фундаментных болтов, которыми крепится опора к фундаменту.

При отношении высоты аппарата к его диаметру H/D >5 (H/D=6,4) аппараты оснащают цилиндрическими или коническими юбочными опорами.

Аппарат по высоте условно разбивается на участки — произвольно, но не более чем через 10 м. Сила тяжести каждого участка принимается сосредоточенной в середине участка. Ветровая нагрузка, равномерно распределенная по высоте аппарата, заменяется сосредоточенными силами, приложенными в тех же точках, что и сила тяжести участков.


Расчёт многокорпусной выпарной установки

Рис. 12 Схема разбивки аппарата на участки при расчете его на ветровуюнагрузку.

Нормативный скоростной напор ветра q0 на высоте от поверхности земли до x=10 м для разных географических районов России различен, он принимается по таблице 7, наш город находиться в районе 2.

Для высот более 10 м нормативный скоростной напор принимается с поправочным коэффициентом θ, величина которого определяется по графику на рис. 7.


Расчёт многокорпусной выпарной установки

Рис.7 График для определения поправочного коэффициента Расчёт многокорпусной выпарной установки на увеличение скоростного напора ветра для высот более 10.


Таблица 20 Нормативный скоростной напор ветра q0 на высоте от поверхности земли до 10 м для разных географических районов Росси по ОН 26-01 -13- 65/Н1039–65

Географический район России 1 2 3 4 5 6 7
q, Па 230 300 380 480 600 790 850

Т.к. высота аппарата 13 м , то разбиваем её на 4 равных уровня по 3,25 м и определяем скоростной напор на каждом из них по формуле:


q= θ· q0·К (54)


где К – аэродинамический коэффициент (для цилиндрического корпуса К=0,6).

при x1=3,25 м => 1q= θ1· q0·К =1·300∙0,6=180 Па;

при x2=6,5 м => q2= θ2· q0·К =300·0,6=180 Па;

при x3=9,75 м => q3=θ3·q0·К =1·300·0,6=180 Па;

при x4=13 м => q4=θ4· q0·К =1,1·300 ·0,6=198 Па.

Кроме учета изменения нормативного скоростного напора ветра в зависимости от высоты аппарата при расчете на ветровую нагрузку, учитываются также динамическое воздействие на аппарат возможных порывов ветра, колебания аппарата и явления резонанса, возникающего в том случае, когда при определенных скоростях ветра частота порывов его совпадает с частотой собственных колебаний аппарата. Для этого при определении расчетной нагрузки от ветра вводится коэффициент увеличения скоростного напора:


Расчёт многокорпусной выпарной установки (55)


где Расчёт многокорпусной выпарной установки – коэффициент динамичности, определяемый по графику на рис.8, Расчёт многокорпусной выпарной установки – коэффициент пульсации скоростного напора ветра, определяемый по графику на рис. 9.


Расчёт многокорпусной выпарной установки

Рис. 8. График для определения коэффициента динамичности


Период собственных колебаний аппарата Т в секундах определяется по формуле:

Расчёт многокорпусной выпарной установки, (56)


где Н – высота аппарат, м; Еt – модуль нормальной упругости материала корпуса аппарата при рабочей температуре, МПа; Еt=2,00·105 МПа; J – момент инерции верхнего поперечного сечения корпуса аппарата относительно центральной оси, м4; g – ускорение силы тяжести, м/с2; G – сила тяжести всего аппарата, МН.


Расчёт многокорпусной выпарной установки

Рис. 9. График для определения коэффициента пульсации скоростного напора ветра.


Расчёт многокорпусной выпарной установки (57)


Расчёт многокорпусной выпарной установки

Расчёт многокорпусной выпарной установки

где плотность материала стали ρХ18Н10Т = 7880 кг/м3.

Расчёт многокорпусной выпарной установки

Подставляем найденные значения:

Расчёт многокорпусной выпарной установки

Тогда Расчёт многокорпусной выпарной установки=1,5 по графику.

Далее находим:

Расчёт многокорпусной выпарной установки;

Расчёт многокорпусной выпарной установки;

Расчёт многокорпусной выпарной установки;

Расчёт многокорпусной выпарной установки.

Далее определяем силу, действующую на i-й участок аппарата от ветрового напора:


Расчёт многокорпусной выпарной установки (58)


Расчёт многокорпусной выпарной установки;

Расчёт многокорпусной выпарной установки;

Расчёт многокорпусной выпарной установки;

Расчёт многокорпусной выпарной установки.

Далее определяем изгибающий момент от ветровой нагрузки относительно основания аппарата:

Расчёт многокорпусной выпарной установки

Изгибающий момент от действия ветровой нагрузки на одну площадку, расположенную на высоте хi - от основания аппарата, Мвni определяется по формуле


Расчёт многокорпусной выпарной установки (59)


где xni – расстояние от низа i-ou площадки до основания аппарата в м; Расчёт многокорпусной выпарной установки

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: