Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол
7. Определим сопротивление парожидкостного слоя по формуле (2.72):
Итак, гидравлическое сопротивление тарелки в нижней части колонны составит по (2.61):
Проверим, соблюдается ли при расстоянии между тарелками h=0.3 м необходимое для нормальной работы тарелок условие:
,
следовательно, условие выполняется.
Проверим равномерность работы тарелок – рассчитаем минимальную скорость пара в отверстиях ωо,min достаточную для того, чтобы ситчатая тарелка работала всеми отверстиями.
ωо<ωо,min→5.47<6.94, следовательно, тарелки будут работать не всеми отверстиями.
3.7. Расчет числа действительных тарелок графоаналитическим методом (построение кинетических кривых)
Определим вязкость жидкости (бензол и толуол) при температуре t=200C в верхней и нижней частях колонны по формулам (2.94, 2.95):
а) в верхней
части колонны
при
;
:
б) в нижней части колонны:
Рассчитаем коэффициент диффузии в жидкости при температуре t=200С в верхней и нижней частях колонны по формулам(2.92,2.93):
а) в верхней
части колонны
при
;
б) в нижней части колонны:
Определим плотность жидкости (смеси) при t=200C в верхней и нижней частях колонны по формулам (2.46, 2.47):
а) в верхней части колонны:
при
;
б) в нижней части колонны:
при
;
Рассчитаем температурный коэффициент b для верхней и нижней частей колонны по формулам (2.96, 2.97):
а) в верхней части колонны:
б) в нижней части колонны:
Рассчитаем коэффициент диффузии в жидкости при средней температуре в верхней и нижней частях колонны по формулам (2.90, 2.91):
а) в верхней части колонны:
б) в нижней части колонны:
Определим коэффициент диффузии в паровой фазе при средней температуре в верхней и нижней частях колонны по формулам (2.98, 2.99):
а) в верхней части колонны при tср.в.=890С:
б) в нижней части колонны при tср.н.=1030С:
Определим плотность орошения для верхней и нижней частей колонны по формулам (2.100, 2.101): а) в верхней части колонны:
б) в нижней части колонны:
Определим удельный расход жидкости на 1м ширины переливной перегородки для верхней и нижней частей колонны по формулам (2.88, 2.89):
а) в верхней части колонны:
б) в нижней части колонны:
Рассчитаем скорость пара в рабочем сечении тарелки по формуле (2.79):
Рассчитаем показатель степени в формуле расчета высоты светлого слоя жидкости по формуле:
Рассчитаем поверхностное натяжение воды при tср.в.=890С и tср.н.=1030С интерполяцией с использованием справочной информации по поверхностному натяжению воды [11]:
Поверхностное натяжение воды при tср.в.=890С:
При t=800С→σв=62.6·10-3 Н/м; при t=1000С→σв=58.9·10-3 Н/м
Поверхностное натяжение воды при tср.н.=1030С:
При t=1000С→σв=58.9·10-3
Н/м; при t=1200С→σв=54.9·10-3
Н/м
Определим высоту светлого слоя жидкости для верхней и нижней частей колонны по формуле (2.87):
а) в верхней части колонны:
б) в нижней части колонны:
Критерий Фруда определим по формулам (2.83,2.84)
а) в верхней части колонны:
б) в нижней части колонны:
Определим паросодержание барботажного слоя по формулам (2.85, 2.86):
а) в верхней части колонны:
б) в нижней части колонны:
Рассчитаем коэффициенты массоотдачи, отнесенные к единице рабочей площади тарелки для жидкой и паровой фаз по формулам (2.81, 2.82):
а) в верхней части колонны:
б) в нижней части колонны:
Осуществим
пересчет коэффициента
массоотдачи
из
в
:
а) в верхней части колонны:
б) в нижней части колонны:
При х=0,05 в нижней части колонны коэффициент распределения m (тангенс угла наклона равновесной линии в этой точке) равен 2,60.
По формуле (2.80) вычислим коэффициент массопередачи Куf:
Определим число единиц переноса по формуле (2.78):
Рассчитаем локальную эффективность по пару по формуле (2.77):
Фактор массопередачи для нижней части колонны:
,
где
Тогда:
Рассчитаем В по формуле (2.76):
Далее определим значение Е′′mу по формуле (2.75):
Определим Е′mу по формуле (2.74):
Эффективность по Мэрфи находим по формуле (2.73), принимая e, равным 1:
При х=0,60 в верхней части колонны коэффициент распределения m (тангенс угла наклона равновесной линии в этой точке) равен 0.82.
По формуле (2.80) вычислим коэффициент массопередачи Куf:
Определим число единиц переноса по формуле (2.78):
Рассчитаем локальную эффективность по пару по формуле (2.77)
Фактор массопередачи для верхней части колонны:
Рассчитаем В по формуле (2.76):
Далее определим Е′′mу по формуле (2.75):
Определим величину Е′mу по формуле (2.74):
Эффективность по Мэрфи находим по формуле (2.73), принимая e, равным 1:
Интерполяцией определим Y*, необходимое для нахождения Yвых. Для расчета используем данные табл. 3.1.
В верхней части колонны:
при х=0.60:
при х=0.75:
при х=0.90:
В нижней части колонны:
при х=0.05:
при х=0.15:
при х=0.30:
По уравнениям рабочих линий находим Yвх:
В верхней
части колонны:
При х=0.60→
При х=0.75→
При х=0.90→
В нижней части
колонны:
При х=0.05→
При х=0.15→
При х=0.30→
Используя, ранее рассчитанные Y*, Yвх и Еmy, определим Yвых:
В верхней части колонны:
В нижней части колонны:
Результаты расчета параметров, необходимых для построения кинетической линии, приведены в табл. 3.4:
Таблица 3.4 Данные для построения кинетической линии
параметр | Нижняя часть | Верхняя часть | ||||
x | 0.05 | 0.15 | 0.30 | 0.60 | 0.75 | 0.90 |
m | 2.60 | 1.87 | 1.34 | 0.82 | 0.65 | 0.51 |
Kyf | 0.09 | 0.10 | 0.11 | 0.10 | 0.10 | 0.11 |
noy | 4.79 | 5.32 | 5.85 | 5.11 | 5.11 | 5.62 |
Ey | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
λ | 1.83 | 1.31 | 0.94 | 1.21 | 0.96 | 0.75 |
В | 2.01 | 1.44 | 1.03 | 1.32 | 1.06 | 0.83 |
E''my | 2.17 | 1.75 | 1.49 | 1.67 | 1.51 | 1.38 |
E'my | 1.51 | 1.40 | 1.28 | 1.37 | 1.30 | 1.23 |
Emy | 0.69 | 0.67 | 0.64 | 0.42 | 0.42 | 0.41 |
Y* | 0.11 | 0.29 | 0.51 | 0.79 | 0.88 | 0.96 |
Yвх | 0.06 | 0.21 | 0.43 | 0.72 | 0.82 | 0.92 |
Yвых | 0.09 | 0.26 | 0.48 | 0.75 | 0.85 | 0.94 |
Используя данные табл. 3.4, наносим на диаграмму равновесия между паром и жидкостью в системе бензол–толуол при флегмовом числе R=2.12 точки, по которым проводим кинетическую линию (см. рис. 3.23).
Рис. 3.23. Определение числа действительных тарелок бензольно-толуольной смеси при флегмовом числе R=2.12
Построением ступеней между рабочей и кинетической линиями определим число действительных тарелок для верхней (укрепляющей) и нижней (исчерпывающей) частей колонны.
Общее число действительных тарелок:
4. Выбор конструкционного материала аппарата и опор
Оборудование современных процессов нефтепереработки и нефтехимии должно работать при низких и высоких температурах, значительных механических напряжениях, в агрессивных рабочих средах. Поэтому материалы, применяемые в нефтезаводском, нефтехимическом машиностроении, должны непременно обладать радом свойств:
высокой механической прочностью;
высокой жаропрочностью, т.е. способностью сохранять необходимую прочность при работе в условиях высоких температур;
сохранением свойств после резких теплосъемов;
высокими вязкостью и усталостными свойствами (циклической прочностью) – устойчивостью против знакопеременных или повторных однозначных нагрузок;
малой склонностью к старению, т.е. к неблагоприятному изменению с течением времени механических свойств, выражающемуся в снижении вязкости и повышении твердости и прочности.
высокой коррозионной стойкостью в агрессивных средах, а также жаростойкостью – устойчивостью против химического разрушения при высоких температурах.
Следовательно, конструкционный материал подбирается в зависимости от таких важных факторов как тепловая нагрузка аппарата, температурные условия процесса, физико-химические параметры рабочих сред, условия теплообмена, характер гидравлических сопротивлений, вид материала и его коррозийную стойкость, простота устройства и компактность, расположение аппарата, взаимное направление движения рабочих сред, возможность очистки поверхности теплообмена от загрязнений, расход металла на единицу переданной теплоты и другие технико-экономические показатели. Для изготовления оборудования применяют углеродистые и легированные стали, серый, модифицированный и легированные чугуны, цветные металлы и сплавы, а также неметаллические материалы.
Химические продукты в той или иной мере всегда вызывают коррозию материала аппарата, поэтому для изготовления их применяют различные металлы (железо, чугун, алюминий) и их сплавы. Наибольшее применение находят стали. Стали с низким содержанием углерода хорошо штампуются, но плохо обрабатываются резанием. Добавки легирующих элементов улучшают качество сталей и придают им особые свойство (например, хром улучшает механические свойства, износостойкость и коррозионную стойкость; никель повышает прочность, пластичность; кремний увеличивает жаростойкость).
Хромоникелевые стали обладают коррозионной стойкостью в агрессивных средах, чем хромистые нержавеющие стали. Поэтому для проведения процесса ректификации смеси бензол – толуол подойдет аппарат, изготовленный из марок