Xreferat.com » Рефераты по химии » Норборненна-2,5-диен и его свойства

Норборненна-2,5-диен и его свойства

НБД↔NiP3(НБД) + P

8. NiP4 + AA↔NiP4(AA)

9. NiP3 + AA↔NiP3(AA)

10. NiP2 + AA↔NiP2(AA)

11. NiP + AA↔NiP(AA)

12. NiP3(AA) + НБД↔NiP3(AA) (НБД)

13. NiP2(AA) + НБД↔NiP2(AA) (НБД)

14. NiP(AA) + НБД↔NiP(AA) (НБД)

15. NiP3(AA) (НБД) ↔S1 + AcOH + NiP3

16. NiP3(AA) (НБД) ↔S2 + AcOH + NiP3

17. NiP3(AA) (НБД) ↔S3 + AcOH + NiP3

18. NiP2(AA) (НБД) ↔S1 + AcOH + NiP2

19. NiP2(AA) (НБД) ↔S2 + AcOH + NiP2

20. NiP2(AA) (НБД) ↔S3 + AcOH + NiP2

21. NiP(AA) (НБД) ↔S1 + AcOH + NiP

22. NiP(AA) (НБД) ↔S2 + AcOH + NiP

23. NiP(AA) (НБД) ↔S3 + AcOH + NiP

24. P(O-iC3H7) 3 + AcOH↔H(O) P(O-iC3H7) 3 + C3H7Oac

P ≡ P(O-iC3H7) 3; НБД ≡ норборнадиен; АА ≡ аллилацетат; S1, S2 и S3 ≡ продукты аллилирования НБД.

Ключевой стадией является формирование каталитически активного комплекса никеля, где образуется аллильный фрагмент. Формирование подобных комплексов описано в работах Ямамото и сотр 15. В процессе окислительного присоединения оргонических вществ, имеющих связь С-О, происходит встраивание металла с образованием аллильного комплекса:

Норборненна-2,5-диен и его свойства

Рисунок 1.3. Механизм образования аллильного комплекса никеля.

Далее молекула НБД координируется на атоме металла, вызывая η3 – η1 – изомеризацию аллилиьного лиганда, а затем внедряется по связи η1 – металл.

Анализ данных позволил авторам утверждать, что образование индивидуальных продуктов I – III связано с наличеем в каталитической системе комплексов никеля, содержащих различное число фосфитных лигандов 7 9 10.

В зависимости от количества фосфорорганических заместителей реализуются различные направления циклизации, которые завершаются β-гидридным переносом, образованием продуктов аллилирования и регенерацией NiPn:

Норборненна-2,5-диен и его свойства

Рисунок 1.4. Зависимость направления реакции аллилировани НБД от соотношения P(O-iC3H7) /Ni.


Совокупность литературных и экспериментальных данных 7 9 10 позволили авторам предложить механизм каталитического аллилирования НБД (рис 1.4) В соответствии с ним комплексы allNiPnOAc доминируют в реакционной среде. Молекула НБД, координируясь на атоме никеля вызывает η3 – η1 – изомеризацию аллилиьного лиганда, а затем внедряется по связи η1 – аллил – металл. Затем, в зависимости от колличества фосфорорганического заместителя, осуществляются различные направления циклизации, которые завершаются β – гидридным переносом, образованием продуктов и регенирацией NiPn, к которому быстро окислительно присоединяется молекула аллилацетата из раствора. При n=1 происходит хелатная координация НБД в комплексе, что вызывает образование продукта III, имеющего нортрициклическое строение 10.


Норборненна-2,5-диен и его свойства

Рисунок 1.5. Заключительная часть механизма каталитического аллилирования НБД аллилацетатом.


Стадия гидридного переноса, очевидно, лимитирует процесс. Протекание такой стадии с участием β – углеродного атома подтверждено при использовании модельной системы C3D5OCOCD3.

Норборненна-2,5-диен и его свойства

Рисунок 1.6. Фрагмент мехпнизма каталитического аллилрования НБД аллилацетатом для модельной системы C3D5OCOCD3 – НБД.


Малекулярные массы продуктов I и II различаются, что подтверждает возможность отрыва атома водорода как из НБД – кольца, так и аллильного фрагмента.

Уксусная кислота как и в случае НБН, дестабилизирует каталитическую систему. По этой причине в статическом реакторе количество оборотов катализатора, как правило, не превышает 150 – 200.

Применение цеалитов 11 12 позволяет существенно повысить время жизни катализатора и увеличить число каталитических циклов до 2000.

Влияние соотношения реагентов – НБД и аллилиацетата – на закономерности процесса.

Выше было показано, что максимальный выход продуктов аллилирования НБД I – III наблюдается при эквимолярном соотношении реагентов. При избытке НБД образуется незначительное количество его димеров и падает суммарная скорость процесса 5.

Если взаимодействие НБД проводить с двукратным мольным избытком аллилацетата (200С, НБД: Ni(acac) 2, 10-15: 1), то в реакционной смеси на ряду с продуктами I – III, появляется продукт IV, образование которого представлено авторами как присоединение к НБД 2 молей аллилацетата. Позднее было показано 9 10, что в этих условиях наблюдается вторичное аллилирование соединений с норборненовыми структурами I и II, приводящее к большому количеству изомерных продуктов (реакция 6):


Норборненна-2,5-диен и его свойства

(6)

Строение и соотношение продуктов двойного аллилирования НБД зависит от условий – температуры и соотношения P/Ni. Скорость аллилирования двойной связи НБД в несколько раз превышает скорость стадии повторного аллилирования.

Аллилирование НБД комплексами палладия.

Модель единичного каталитического цикла, описанная в разделе 1.2.1, оказалась очень удобной для изучения для изучения основных направлений циклоприсоединения аллильного фрагмента к НБД и установления деталей механизма. В работе Берселлини и сотр.15 показано, что в этой стехиометрической реакции помимо соединений никеля могут быть использованы аллильные комплексы других металлов – железа, родия, палладия и платины. На основании совокупности литературных данных в 1991 году была высказана гипотеза о возможности разработки каталитических систем с участием широкого круга переходных металлов 7. В 2000 году появилось сообщение об использовании палладиевого катализатора для аллилирования НБН 16.

Строение продуктов аллилирования НБД, образующихся в присутствии комплексов палладия 17 18, аналогично строению продуктов никель-катализируемой реакции 5. При этом для различных исходных палладиевых систем наблюдается примерно одинаковая активность и близкие соотношения продуктов реакции. Что свидетельствует о генерировании одних и тех же каталитически активных комплексах. В качестве предшественников каталитически активных частиц реакции 5 использовались Pd(dba) 2+2PPh3, Pd(OAc) 2+2PPh3, PdCl2(PPh3) 2, [(C3H5) Pd] NO3+2PPh3. В качестве аллилрующего агента использовали аллилацетат.

Палладиевые катализаторы проявляют активность как на воздухе, так и в инертной атмосфере, тогда как никелевые системы активны только в условиях полного отсутствия кислорода. Однако, несмотря на то, что присутствие воздуха не приводит к разрушению палладиевой каталитической системы, скорость реакции в этих условиях низкая. Причиной дезактивации катализатора является побочная реакция окисления трифенилфосфина.

Соотношение продуктов аллилирования НБД зависит от температуры. При 25 – 60 0С преимущественно образуются продукты I и II, в которых сохраняется норборненовая двойная связь. При более высокой температуре (80 0С) наблюдается рост относительного количества соединения III, являющегося [2+4] -циклоаддуктом.

Проведение реакции в спиртовых средах способствует незначительному увеличению относительного количества соединения I.

При мольном соотношении АА/НБД более единицы происходит вторичное аллилирование незамещенной норборненовой двойной связи в соединения содержащих метилен циклобутановый фрагмент (I) или винильную г и метиленовую группу(II) (реакция 7) 17.


Норборненна-2,5-диен и его свойства


(7)

Общий характер диспропорционирования водорода между η3-аллильными лигандами подтвержден для комплексов различных переходных металлов Со, Fe, Ni, Rh, Pd и Pt 19 20 21. Таким образом, в работе Берселлини и сотрудников 15 показана η3 – η1 – изомеризацию аллилиьного лиганда в комплексах палладия в присутствии непредельных углеводородов.


Норборненна-2,5-диен и его свойства

R ≡ непредельный углеводород.


Сравнивая каталитические системы на основе на основе комплексов никеля и палладия, следует отметить, что никелевые катализаторы более активны, а оптимизация ряда параметров каталитического процесса (температуры, соотношение фосфит-никель, удаление образующейся кислоты) позволяет повысить селективность по каждому из продуктов до 80 – 95%. Палладиевые катализаторы проявляют меньшую удельную активность, но более стабильны в присутствии кислорода и легко регенерируются.

Аллилирующие агенты в реакциях циклоприсоединения НБД и НБН – производных.

Аллилирующими агентами служат сложные аллиловые эфиры органических кислот, среди которых наиболее часто используется аллилацетат. Аналогичные результаты могут быть полученны при использовании аллилпропионата, аллилбутирата или аллилбензоата 3 22. В ряде работ в качестве источника аллильных фрагментов упоминается аллилформиат, но конкретные данные, связанные с его использованием в реакциях аллилирования с НБД и НБН-производными в литературе отсутствуют.

Циклосодимеризация аллилформиата с НБН лает возможность получать циклический продукт аллилирования I с селективностью 100%, однако общий выход содимера в этих опытах намного ниже, чем с АА 3. Как было выяснено авторами, причиной разрушения катализатора в опытах с аллилформиатом является образующаяся в ходе реакции НСООН. Муравьиная кислота образуется в больших каллилчествах в реакционной среде и в данных условиях накапливается без разложения.

Этими же авторами было показано, что участие в реакции аллилирования НБН других аллиловых производных – аллиловый спирт, диаллиловый эфир, аллилгалогениды – в данных условиях невозможно.

В качестве других классов органических соединений способных участвовать в реакции аллилирования в работах Киузоли упоминаются аллилигалагениды и потенциально – аллиловый спирт и диалллиловый эфир 13.

Норборненна-2,5-диен и его свойства

X ≡ Cl, Br, I, OH и OR;

M ≡ Ni0, Pd0.


В этой работе показано, что реакции цикклоприсоединения с участием аллилгалогенидов протекает в атмосфере монооксида углерода, молекула которого, встраиваясь по связи С – М, облегчает η3 – η1 – изомеризацию и формирование аллильного фрагмента. В этих условиях возможно формирование аллильного фрагмента и каталттически активного комплекса металла. В присутствии непредельного углеводорода происходит его координация на активном атоме, а затем образование продуктов присоединения. В качестве побочных продуктов образуется кислота.


Выводы


Из анализа литературных данных следует, что в настоящее время известны многочисленные каталитические системы для реакции аллилирования НБД и НБН – производных.

Имеющиеся в литературе данные позволяют выявить основные закономерности, присущие процессам с участием НБД и катализируемые никелевыми катализаторами. Факторы и тенденции, определяющие образование продуктов определенного строения и регулирования селективности процесса, недостаточно изучены.

Имеются лишь отдельные работы, посвященные исследованию механизма каталитического аллилирования НБД и НБН – производных, выявлению природы и строения каталитически активных комплексов, определяющих структуру образующихся соединений и ответственных за селективность процесса, а также позволяющих целенаправленно проводить синтезы продуктов заданного строения.

Только незначительное количество работ посвящено исследованию кинетических закономерностей. Небольшое количество подобных данных затрудняет возможность делать обоснованные выводы о механизме этих реакций и целенаправленный поиск новых селективных каталитических систем.

Малоизученна возможность проведения каталитического аллилирования НБД и НБН – производных при использовании в качестве катализаторов не только комплексов никеля, но и комплексов других переходных металлов. В частности, комплексов переходных металлов Pt, Co, Rh. Следует отметить, что в последнее время большое внимание уделяется возможности использования в данной реакции каталитических систем на основе комплексов Pd.

В изученной литературе достаточно полно изучено взаимодействие НБД и НБН – производных с аллилацетатом, используемом в качестве аллилирующего агента. В ряде работ приведены аналогичные результаты и для других сложных аллиловых эфиров органических кислот: аллилпропионата, аллилбутирата и аллилбензоата. Наименее изученым аллиловым эфиром является аллилформиат.

В изученной литературе отмечено о возможности использования в качестве аллилирующих агентов и других классов аллильных соединений: аллилового спирта, простых аллиловых эфиров, аллилгалогенидов. Однако, отсутствуют конкретные данные об использовании этих веществ в реакции каталитического аллилирования НБД и НБН – произвоных.


Постановка задачи


Анализ литературных данных по реакции аллилирования НБД и НБН – производных показывает, что металлокомплексные катализаторы обеспечивают уникальные возможности для получения разнообразных полициклических углеводородов, а их использование является наиболее перспективным путем развития этого синтетического направления. Тем не менее, несмотря на обилие экспериментальных данных, в настоящее время лишь в небольшом количестве работ выявлены особенности механизма данного процесса.

Реакция аллилирования НБД и НБН – производных облавает чрезвычайно богатыми синтетическими возможностями. Но этот фактор порождает проблемы, связанные с одновременной реализацией сразу нескольких реакций в одной и той же реакционной системе. Трудности разделения и анализа изомерных продуктов, вопросы рационвльного использования реагентов и недостаточная эффективность катализаторов во многом ограничивают крупномасштабное применение НБД.

Как было отмечено, для НБД-производных существуют все известные на сегодняшний день виды изомерии: скелетная (для продуктов, полученных циклоприсоединением различного типа), регио, стерео (цис/транс, экзо/эндо, син/анти), оптическая. Переходные металлы принципиально способны влиять на селективность любого уровня, однако для этого необходима детальная информация о механизме их действия. К сожалению, в литературе практически отсутствуют такие данные. Большую редкость представляют кинетические исследования, необходимые для установления механизма и оценки реакционной способности.

В большинстве работ, посвященных реакции аллилирования НБД и НБН – производных, рассматривается процесс содимеризации с аллиловыми эфирами карбоновых кислот в присутствии каталитических систем на основе комплексных соединений никеля. В ряде работ упоминается возможность использования комплексов других переходных металлов. В связи с этим было интересно выяснить особенности поведения комплексов палладия, которые так же проявляют каталитическую активность и являются более устойчивыми.

Как уже было отмечено, аллилирующими агентами служат сложные аллиловые эфиры органических кислот, среди которых наиболее часто используется аллилацетат. Аналогичные результаты могут быть полученны при использовании аллилпропионата, аллилбутирата или аллилбензоата. Особняком в этом списке стоит аллилформиат. Хотя в ряде работ он упоминается в качестве источника аллильных фрагментов, но конкретные данные, связанные с его использованием в реакциях аллилирования с НБД и НБ-производными в литературе отсутствуют. Этот факт вызывает удивление, учитывая коммерческую доступность АФ и легкость формирования из него η3-аллильных производных переходных металлов – ключевых интермедиатов каталитического процесса. В связи с вышеизложенным изучение особенностей поведения АФ в реакции аллилирования НБД представляется весьма актуальным.

Кроме того, в литературе отсутствуют данные о возможности использования других классов аллильных производных, что также является актуальным направлением в исследовании реакции.

Вызывает также интерес выяснение роли образующейся в ходе реакции карбоновой кислоты, природа которой, несомненно, оказывает влияние на устойчивость каталитической системы.


Глава 2. Экспериментальная часть.


Использованные реактивы, их квалификация и очистка.

Применявшиеся в качестве растворителя вещества (ацетонитрил, метанол) квалификации "осч" очищали стандартными методами 23.

Ацетонитрил перегоняли над пентаоксидом фосфора. Метанол очищали дистиляцией.

Применявшийся в качестве реагентов аллилформиат, аллиловый спирт, диаллиловый эфир, НБД марки "ч" сушили над хлоритым кальцием, подвергали фракционной перегонке. Чистота не менее 98%.

Дейтерированый реагент: 6 – D – аллиловый спирт – содержание дейтерия не менее 99%.

Аргон "осч", азот "осч" очищали на установке ПГ. Остаточное содержание кислорода не более 10-4% об.

Монооксод углерода получали разложением муравьиной кислоты при воздействии концентрированной серной кислотой. Затем сушили над хлористым кальцием.

Диоксид углерода "ч" очищали от примесей кислорода и влаги на установке ПГ; от других газов – двукратной переконденсацией при 0,1 Па и температуре –1960С.

Трифенилфосфин фирмы Aldrich применяли без дополнительной очистки. Чистота не менее 99%.


2.1. Физико – химические методы исследования и условия их применения.


Масс-спектрометрия. Регистрацию масс-спектров проводили на спектрометре "MS80 Kratos" при энергии ионизирующих электронов 70 эВ, токе эмиссии катода 100 мкА и температуре системы напуска 150°С. Спектры получали в режиме электронного удара, а также химической ионизации. Образцы вводили в источник ионов через хроматографическую приставку. Хроматограф 689 ON Agilent Technologies с капиллярной колонкой длиной 30 м, с диаметром 0.75 мм, фаза "OV – 1", толщина пленки 1мкм.

ГЖХ – анализ. Хроматограф "Хром-5", пламенно-ионизационный детектор, капиллярные колонки SPB-20 и β-DEX фирмы "Supleco" длиной 30 м, с диаметром 0,75 мм, толщина пленок 1 мкм. ЛХМ – 8MD, пламенно-ионизационный детектор, капиллярная колонка, активированный уголь, 3м.

Методики проведения экспериментов.

Аллилирование НБД аллилформиатом.

Исследования проводили в термостатированном вакуумируемом реакторе, снабженном магнитной мешалкой и устройством для отбора проб (рис.2.1). После загрузки всех компонентов реактор обескислороживали. Реакцию проводили в вакууме или в атмосфере аргона при варьировании температуры от 25 до 650С. Соотношение исходных реагентов: НБД/АФ=1/1, Pd3(OAc) 6/НБД=1/10, ТФФ/ Pd3(OAc) 6=2/1. Растворитель – ацетонитрил или метиловый спирт – 0,5 мл.

Взятую навеску диацетата палладия растворяли в ацетонитриле (метаноле) раствор приобретал бурый цвет.д.олее добавляли необходимое количество НБД и аллилформиат, при этом наблюдается покраснение раствора. Далее в полученный раствор вносили заранее взятую навеску трифенилфосфин. Для обескислороживания системы, реактор многократно подвергали вакуумированию при – 1960С при 0,1 Па.

В зависимости от выбранной температуры процесса длительность проведения реакции различная. Процесс сопровождается изменением окраски реакционного раствора. При завершении процесса выделяется неактивный комплекс палладия – осадок черного цвета.

Исследования проводили в термостатированном вакуумируемом реакторе, снабженном магнитной мешалкой и устройством для отбора проб (рис.2.1). После загрузки всех компонентов реактор обескислороживали. Реакцию проводили в атмосфере монооксида (диоксида) углерода при варьировании температуры от 25 до 650С. Соотношение исходных реагентов: НБД/АФ=1/1, kat/НБД=1/10, ТФФ/ Pd3(OAc) 6=2/1. Растворитель – ацетонитрил или метиловый спирт – 0,5 мл.

Взятую навеску диацетата палладия растворяли в ацетонитриле (метаноле) раствор приобретал бурый цвет.д.олее добавляли необходимое количество НБД и аллилформиат, при этом наблюдается покраснение раствора. Далее в полученный раствор вносили заранее взятую навеску трифенилфосфин. Для обескислороживания системы, реактор многократно подвергали вакуумированию при – 1960С при 0,1 Па.

В зависимости от выбранной температуры процесса длительность проведения реакции различная. Процесс сопровождается изменением окраски реакционного раствора. При завершении процесса выделяется неактивный комплекс палладия – осадок черного цвета.

Аллилирование НБД диаллиловым эфиром.

Исследования проводили в термостатированном вакуумируемом реакторе, снабженном магнитной мешалкой и устройством для отбора проб (рис.2.1). После загрузки всех компонентов реактор обескислороживали. Реакцию проводили в атмосфере монооксида углерода при варьировании температуры от 25 до 650С. Соотношение исходных реагентов: НБД/диаллиловый эфир =1/1, Pd3(OAc) 6/НБД=1/10, ТФФ/ Pd3(OAc) 6=2/1. Растворитель – ацетонитрил или метиловый спирт – 0,5 мл.

Взятую навеску диацетата палладия растворяли в ацетонитриле (метаноле) раствор приобретал бурый цвет.д.олее добавляли необходимое количество НБД и аллилформиат, при этом наблюдается покраснение раствора. Далее в полученный раствор вносили заранее взятую навеску трифенилфосфина. Для обескислороживания системы, реактор многократно подвергали вакуумированию при – 1960С при 0,1 Па. Далее к реактору присодиняли балон с СО, предворительно продувая сединительные трубки, исклучая возможность попадания в реакционный объем кислорода воздуха и влаги.

В зависимости от выбранной температуры процесса длительность проведения реакции различная. Процесс сопровождается изменением окраски реакционного раствора. При завершении процесса выделяется неактивный комплекс палладия – осадок красного цвета.

Аллилирование НБД 6 – D – аллиловым спиртом.

Исследования проводили в термостатированном вакуумируемом реакторе, снабженном магнитной мешалкой и устройством для отбора проб (рис.2.1). После загрузки всех компонентов реактор обескислороживали. Реакцию проводили в атмосфере монооксида углерода при варьировании температуры от 25 до 650С. Соотношение исходных реагентов: НБД/6 – D – аллиловый спирт=1/1, Pd3(OAc) 6/НБД=1/10, ТФФ/ Pd3(OAc) 6=2/1. Растворитель – ацетонитрил или метиловый спирт – 0,5 мл.

Норборненна-2,5-диен и его свойстваВзятую навеску диацетата палладия растворяли в ацетонитриле (метаноле) раствор приобретал бурый цвет. Далее добавляли необходимое количество НБД и аллилового спирта, при этом наблюдается покраснение раствора. Далее в полученный раствор вносили заранее взятую навеску трифенилфосфина. Для обескислороживания системы, реактор многократно подвергали вакуумированию при – 1960С при 0,1 Па. Далее к реактору присодиняли балон с СО, предворительно продувая сединительные трубки, исключая возможность попадания в реакционный объем кислорода воздуха и влаги.

В зависимости от выбранной температуры процесса длительность проведения реакции различная. Процесс сопровождается изменением окраски реакционного раствора. При завершении процесса выделяется неактивный комплекс палладия – осадок черного цвета.


Физико – химические свойства продуктов аллилирования.

№№ Структура Молек. масса Т кип., 0С (Р, мм рт. ст) nD20
I

Норборненна-2,5-диен и его свойства

132 54,0 (20) 1,4800
II

Норборненна-2,5-диен и его свойства

132 52,5 (20) 1,4785
III

Норборненна-2,5-диен и его свойства

132 67,5 (20) 1,5094
IV

Норборненна-2,5-диен и его свойства

172 59 – 60 (20) 1,5035
V

Норборненна-2,5-диен и его свойства

172 56,5 – 57,0 (20) 1,5185
VI

Норборненна-2,5-диен и его свойства

172 52,0 – 53,0 (20) 1,5134
VII

Норборненна-2,5-диен и его свойства

134 78,0 – 80,0 (20) 1,4940
VIII

Норборненна-2,5-диен и его свойства

134 76,5 – 77,5 (20) 1,5005

Типичный вид хроматограммы реакционного раствора при взаимодействии НБД и АФ.

Норборненна-2,5-диен и его свойства


Массспектры продуктов аллилирования и двойного аллилирования НБД.


Норборненна-2,5-диен и его свойства


Норборненна-2,5-диен и его свойства


Норборненна-2,5-диен и его свойства


Норборненна-2,5-диен и его свойства


Норборненна-2,5-диен и его свойства


Норборненна-2,5-диен и его свойства


Норборненна-2,5-диен и его свойства


Типичная хроматограмма газовой фазы.

Норборненна-2,5-диен и его свойства

Глава 3. Результаты и их обсуждение


3.1. Каталитическое аллилирование НБД аллилформиатом.


Взаимодействие НБД с АФ приводит к образованию разнообразных соединений количественно превышающих число продуктов аллилирования НБД другими аллиловыми эфирами. Типичная хроматограмма реакционного раствора приведена в пункте 2.5.

Многие продукты аллилирования НБД аллилформиатом и аллилацетатом имеют одинаковое строение. Это моноаддукты I – III, характеризующиеся молекулярной массой 132, и пространственные изомеры продуктов двойного аллилирования НБД IV – VI с массами 172 (таблица 3).

Новые соединения при использованиии АФ имеют массы 134, 174 и 176. Очевидно они образуются при гидрировании I, II, V, VI. Гидрированию преимущественно подвергаются соединения, имеющие активную внутрициклическую двойную связь (I и II), или вещества, содержащие винильные группы (I, V, VI). Продукты гидрирования метиленовых групп в указанных условиях не наблюдаются.

Помимо указанных соединений обнаружены продукты присоединения АФ к НБД (XIII и XIV), а также в незначительных количествах (2 – 5%) норборнен. В газовой фазе обнаружено до 3% углекислого газа СО2.


Таблица 3

Строение продуктов аллилирования НБД аллилформиатом.

Классификация продуктов реакции


Строение продуктов Молекулярная масса
одинарное аллилирование НБД

Норборненна-2,5-диен и его свойства

132
двойное аллилирование НБД

Норборненна-2,5-диен и его свойства

172
аллилирование с одновременным гидрированием НБД

Норборненна-2,5-диен и его свойства

134
двойное аллилирование с одновременным гидрированием НБД

Норборненна-2,5-диен и его свойства

174, 176
гидроформилирование НБД

Норборненна-2,5-диен и его свойства

138

Все соединения, образующиеся в ходе реакции, можно формально классифицировать как аддукты НБД с С3Н4, С3Н6, Н2 и НСООН. Очевидно, источником этих гипотетических частиц или молекул являются аллильные фрагменты, изначально входящие в состав аллилформиата. Аллил (С3Н5) образует фрагмент С3Н4, а акцептором атома водорода формально служат или другой аллил, или формильный остаток. Возможна также рекомбинация двух атомов водорода (рисунок 3.1):

Рассматривая эту реакцию как окислительно-восстановительное диспропорционирование, связанное с гидридным переносом, представляется возможным провести оценку материального баланса продуктов "окисления" и "восстановления". К продуктам окисления с этой точки зрения следует отнести соединения I – VI и СО2, восстановительными продуктами являются, продукты гидрирования и гидрокарбоксилирования. Молекулярный водород и муравьиная кислота – потенциальные продукты восстановления – в реакционной системе не образуются. При сведении материального баланса следует учитывать, что соединения IV – VI – являются дважды окисленными (С7Н8+2С3Н4), а соединение XII – дважды восстановленным.

Норборненна-2,5-диен и его свойстваРисунок 3.1. Механизма каталитического аллилирования НБД аллилформиатом.


Предварительные результаты свидетельствуют, что окислительно-восстановительный баланс удовлетворительно соблюдается не только между конечными продуктами, но и в ходе каждого эксперимента при различных конверсиях реагентов.

Дополнив предложенный ранее механизм каталитического аллилирования НБД аллилацетатом можно объяснить образование всех наблюдаемых продуктов (рис.2).

Норборненна-2,5-диен и его свойстваВ соответствии с ним формирование соединений I – VI в присутствии АФ происходит аналогично другим аллиловым эфирам.


Ключевая роль в образовании продуктов гидрирования и гидроформилирования НБД и соединений I, II, IV – VI по-видимому играет гидридный комплекс, образующийся на стадии β – гидридного переноса.

Для всех R, являющихся алкильными или арильными радикалами, распад этого интермедиата в результате восстановительного элиминирования приводит к образованию кислоты RCOOH. В случае R = H ситуация принципиальна иная. Известно, например, что в присутствии комплексов Pd, муравьиная кислота является является гидрирующим агентом и распадается с образованием CO2.

Норборненна-2,5-диен и его свойства


Тогда можно предположить, что формирующийся комплекс может участвовать в следующих превращениях:


Норборненна-2,5-диен и его свойства

Норборненна-2,5-диен и его свойства

Рисунок 3.2. Заключительная часть механизма каталитического аллилирования НБД аллилформиатом.


Все направления реализуются одновременно, их соотношение зависят от концентрации всех реагентов, что, в свою очередь, определяется степенью конверсии НБД.

Восстановление двойных связей, вероятно связано с образованием в реакционной смеси муравьиной кислоты, являющейся гидрирующим агентом, т. к. при ее разложение, по одному из возможных путей, в присутствии катализатора, образуется углекислый газ и водород. При анализе газовой фазы в реакторе действительно был обнаружен углекислый газ, что подтверждает наши предположения.

Следует отметить, при анализе реакционной смеси молекулярный водород и муравьиная кислота – потенциальные продукты восстановления – не обнаружены. Возможно, вся образующаяся кислота расходуется на образование продуктов гидрирования.

Заметим, если аллилирующим агентом является аллилацетат, в ходе реакции образуется устойчивая уксусная кислота. Она оказывает дезактивирующее действие на катализатор, накапливаясь в реакторе. Таким образом, при использовании аллилформиата, как аллилирующего агента, образуется более устойчивая каталитическая система. Следует также отметить, что по качественным наблюдениям реакция с аллилформиатом протекает значительно быстрее, чем с аллилацетатом. Этот факт требует дополнительного исследования.

Необходимо также отметить, что в ходе реакции образуется углекислый газ. Причем СО2, образующийся в качестве побочного продукта реакции, абсолютно индеферентен и не оказывает дезактивирующего влияния на каталитическую систему.


3.2. Каталитическое аллилирование НБД аллиловым спиртом.


Как показано в пункте 1.3, протекание реакции каталитического аллилирования НБД при использовании аллилового спирта, в обычных условиях

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: