Xreferat.com » Рефераты по химии » Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі

Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі

Всі молекули, що мають ковалентний зв’язок, можна розділити на два типи: полярні і неполярні. Якщо будь-яку молекулу з ковалентним зв’язком розмістити у зовнішнє електричне поле, то в молекулі спостерігається зміщення електронної густини і виникає індукований дипольний момент. В електричному полі крім зміщення електронної густини спостерігається і деяке зміщення атомів, а також орієнтація індукованого дипольного моменту вздовж силових ліній зовнішнього поля. Зміщення електронів, атомів та орієнтація молекул у зовнішньому полі називається поляризацією (Р). Загальна поляризація: Р = Рел + Рат + Рорієнт.

Власний дипольний момент буде виникати в молекулах, атоми яких мають різну електронегативність. На більш електронегативному атомі утворюється надлишок негативного електронного заряду, а на менш електронегативному – надлишок позитивного заряду. Така молекула буде диполем. Дипольний момент μ0 молекули виразиться формулою: μ0 = q · l, де q – заряд, l – віддаль між зарядами, μ0 – вектор, напрямок якого проходить від від’ємного до додатного заряду. В системі СІ μ0 вимірюється в Кул · м. Крім того, μ0 прийнято виражати в дебаях (D): 1D = 3,34 · 10–30 Кул · м.

Дипольний момент зв’язаний із симетрією молекул. Полярні молекули належать до точкових груп Сn або Сnv, тобто молекули характеризуються наявністю тільки осей симетрії або осей симетрії і площин симетрії, що перетинаються вздовж цих осей.

Молекули, що мають центр симетрії, дипольним моментом не володіють.

У молекулах з віссю симетрії – дипольний момент завжди направлений вздовж цієї осі.

При наявності площини симетрії вектор дипольного моменту лежить в цій площині.

Дипольний момент ізольованої молекули називається власним, або постійним дипольним моментом.

При поляризації молекул в електричному полі виникає індукований дипольний момент με, який обумовлений зміщенням електронної густини у молекулі: με = α · Е, де α – коефіцієнт поляризуємості, Е – напруга зовнішнього електричного поля.

Причини виникнення дипольних моментів у молекулах. У двохатомній молекулі типу АВ дипольний момент буде виникати тоді, якщо електронна густина в ній зміщена до одного з атомів. Зміщення електронної густини визначається потенціалом іонізації та спорідненістю електронів атомів, що входять до складу молекули.

Потенціал іонізації (І) визначається енергією відриву електрона від ізольованого атому. Для більшості хімічних елементів потенціали іонізації визначені і встановлена їх періодична залежність: по періодах (зліва направо) потенціал іонізації зменшується, а в групах (зверху вниз) збільшується. Це пояснюється закономірною періодичною зміною атомних радіусів елементів.

У відповідності з прийнятою термінологією енергію відриву першого, другого і т. д. електрона називають першим, другим і т. д. потенціалом іонізації. По мірі послідовного відриву електронів потенціал іонізації зростає. Ця залежність описується рівнянням Глокнера-Янсицина: І = a + bq + cq2 + …, де a, b, c – специфічні коефіцієнти для кожного атома; q – заряд іона.

Для нейтрального атома q = 0, тоді І = а.

Якщо уявити молекулу як деякий об’єднаний атом, то можна констатувати, що середня статистична віддаль між ядром і зовнішнім електроном буде більша ніж в ізольованого атома. Звідси випливає, що у випадку ковалентних молекул з σ-зв’язком потенціал іонізації молекули буде меншим ніж в ізольованого атома (за винятком молекули Н2, оскільки у молекулі відсутні внутрішні електрони). При утворенні π-зв’язків центри ваги електронної хмари знаходяться не в міжядерній області, що приводить до зростання взаємодії ядра із зовнішніми електронами, що в свою чергу приведе до зростання потенціалу іонізації молекули порівняно з ізольованим атомом. З ростом кратності зв’язку потенціал іонізації молекули також зростає.

Величина спорідненості до електрона рівна енергії, яка виділяється при приєднанні електрона до нейтрального атома:


А + Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі ® А– + ε.


Для більшості елементів спорідненість до електрону більше 0 (СЕ > 0). Це означає, що електронейтральний атом притягує додатковий електрон так, ніби в нього є деякий додатній заряд. Цей заряд обумовлений тим, що власні електрони атома не повністю нейтралізують заряд ядра. В результаті на зовнішній електрон кожного атома (крім Н) діє ефективний заряд ядра z* > 1. Згідно інтерпретації Слетера можна вважати, що чим ближче до ядра знаходиться електрон, тим повніше буде нейтралізований заряд. Слетер вивів наступні правила:

1. На електрон, що знаходиться на даній оболонці, діє заряд ядра (рівний його атомному номеру z), зменшений на число останніх електронів, помножений на константу екранування (σ) кожного електрона, причому:

1) електрон на зовнішній оболонці має σ = 0,35;

2) електрон на попередній оболонці має σ = 0,85;

3) електрон більш глибоких оболонок має σ = 1;

4) у випадку d, f-елементів σ = 1.

Наприклад: ефективний заряд ядра для Рb визначається так:


ZPb = 82; n = 6:


n = 6, σ = 0,35 для електронів зовнішньої оболонки (n = 6);

n = 5, σ = 0,85 для електронів, що знаходяться на 5-ій оболонці;

n = 1–4, σ = 1 для електронів 4, 3,2, 1 оболонці.

z = 82; число електронів на 6-ій оболонці – 4,

число електронів на 5-ій оболонці – 18,

число електронів на 4, 3, 2, 1 – 60.

Тоді ZPb* = 82 – 0,35 · 4 – 0,85 · 18 – 1 · 60 = 5,3.

Електровід’ємність. Полінг електровід’ємність визначив як здатність атома в молекулі притягувати електрони. Він (1952 р.) відмітив, що для будь-якої пари атомів АВ енергія простого зв’язку А–В, як правило більша, як середня енергія із енергій простих зв’язків А–А і В–В, тобто реакція


А2 + В2 ® 2АВ


завжди екзотермічна.

Це можна пояснити так: зв’язуючу молекулярну орбітель у молекулі АВ можно записати:


ψ = ψА + сψВ,


де ψA і ψB – атомні орбіталі; ψ – молекулярні орбіталі.

а) Якщо коефіцієнт c > 1, то молекулярна орбіталь більше сконцентрована у атома В, який із за цього набуває від’ємний заряд, а атом А, біля якого електронна енергія зменшилась, стає додатньо зарядженим. Таким чином, зв’язок АВ стає полярним: А+–В–.

б) Якщо c < 1, тоді А––В+, тобто в молекулі виникає постійний дипольний момент μD = q · dў (q – величина заряду; dў – віддаль між зарядами.

Цей іонний характер зв’язку А–В збільшить його енергію порівняно з тим, що очікувалась у випадку чисто ковалентного зв’язку. Іонна складова ковалентного зв’язку позначається Δ (дельта):


Δ = Е(А–В) – Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі[E(A–A) + E(B–B)],


де Е(А–В), Е(А–А), Е(В–В) – експериментально визначені енергії вказаних зв’язків.

Якщо кожному атому приписати коефіцієнт електровід’ємності х як міру його електровід’ємності, тоді різниця |xA – xB| повинна бути зв’язана з с і відповідно з Δ. Полінг запропонував співвідношення: |xA – xB| = 0,208Електричні властивості молекул. Поведінка речовини в зовнішньому електричному поліев. Далі він прийняв хn = 2,1, що дало можливість визначити електровід’ємності інших елементів, якщо відомі енергії відповідних хімічних зв’язків. Маяликен (1934) запропонував іншу інтерпретацію електровід’ємності атома, в якій розглядається перехід електронів між атомами даної пари атомів АВ. Якщо електрон переходить від А до В з утворенням тонкої пари А+В–, це відповідає зміні енергії: ІА – ЕВ. Аналогічно, якщо електрон повністю переходить від В до А з утворенням А–В+, зміна енергії рівня ІВ – ЕА. Якщо електрону легше перейти від А до В, то енергія цього переходу повинна виражатись рівнянням:


ІА – ЕВ < ІВ – ЕА,

ІА + ЕВ < ІВ + ЕА.


Маяликен вважав, що сума І + Е є мірою електровід’ємності атома. При відповідному коефіцієнті пропорційності коефіцієнти електровід’ємності в інтерпретації Маяликена добре погоджуються з величинами шкали Полінга.

Олрід і Рохав (1958) розглядають електровід’ємність атома як силу притягання між цим атомом і електроном, що знаходиться від ядра на віддалі ковалентного радіуса:


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі,

е – заряд електрона (4,80274 · 10–10 ел-ст. д.);

Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі– ефективний заряд ядра;

r – ковалентний радіус;

F – електростатична сила притягання.

F можна зв’язати з шкалою Полінга за допомогою рівняння:


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі,


r вимірюється в ангстремах (Е).

Приклад. Визначити коефіцієнт електровід’ємності Рb.


ZPb = 82: 1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p2;

rковPb = 1,538Е;

Zеф = 82 – (0,35 ґ число Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі з n = 6) – (0,85 ґ число Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі з n = 5) – (число Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі з n < 4);

Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі= 82 – 1,4 – 15,3 – 60 = 5,3 (визначено раніше);

Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі.


Мартинов і Богданов запропонували визначати електровід’ємність елементу за формулою: Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі, де Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі – середній потенціал іонізації атома, рівний середньому арифметичному з суми потенціалів іонізації всіх зовнішніх (валентних) електронів.

Чим більша електронегативність атомів, що утворили молекулу, тим більший її дипольний момент. Розрахований дипольний момент (q · l) і визначений експериментально для одної молекули не співпадають. Наприклад:

μексп(D) μрозр(D)

СО 0,11 5,42

HCl 1,04 6,14

HBr 0,79 6,81

KCl 6,8 15,08.


Це вказує на те, що навіть у сильно іонних молекулах типу KCl немає повного переносу електрона від одного атома до іншого, а проходить тільки деформація електронної оболонки в напрямку більш електронегативного елементу.

Адитивна схема визначення дипольного моменту багатоатомної молекули. В основі схеми визначення дипольного моменту багатоатомної молекули лежить уявлення про те, що основним структурним елементом молекули є валентний зв’язок. Багатоатомну молекулу можна представити як систему хімічних зв’язків, кожен з яких можна розглядати як двохатомну молекулу з своїм дипольним моментом. Тому дипольний момент багатоатомної молекули може бути одержаний як векторна сума дипольних моментів хімічних зв’язків, що входять у молекулу. Ця схема називається адитивною. При векторному сумуванні дипольних моментів хімічних зв’язків обов’язково враховується геометрія молекули і напрямок дипольних моментів кожного зв’язку. Наприклад:


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі= μ12 + μ22 + 2μ1 · μ2 · cos Q,


μ1, μ2 – дипольні моменти хімічних зв’язків;

Q – кут між цими хімічними зв’язками.


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі


Якщо μ1 = μ2 = μ, то Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі= μ12 + 2μ2cos Q = 2μ2 (1 + cos Q).

Якщо молекула має більше, ніж два зв’язки, то проводиться послідовне векторне сумування: до суми двох векторів додають третій, до результату – четвертий і т.д., враховуючи геометричне розташування і напрямок дипольних моментів хімічних зв’язків.

Як і для двохатомної молекули, розрахований і експериментально знайдений дипольний момент багатоатомної молекули не співпадають, що може бути пояснено внутрішньомолекулярними взаємодіями атомів.

Індукційний і мезомерний ефект. Індукційний ефект – зміщення електронної густини в напрямку більш електровід’ємного атома або групи атомів. Зрозуміло, що зміщення електронної густини проявляється на величині дипольного моменту. Мезомерний ефект – взаємодія π-зв’язків між собою і π-зв’язків з неподіленими р-електронними парами в атомах замісників. π–π-спряження – делокалізація π-зв’язків у бензолі і дієнових вуглеводнях з спряженими зв’язками.

Якщо в молекулі є два ефекти, то важливо знати їх напрямки паралельний чи антипаралельний. При переході від нітрометану до нітро-бензолу дипольний момент зростає (індукційний і спряжені ефекти однаково напрямлені). При переході від хлорметана до хлор-бензолу дипольний момент хлорбензола менший, ніж у хлорметана. Неподілені електронні пари Сl вступають у спряження з π-зв’язками, і електронна густина зменшується в напрямку бензольного кільця.

Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі


Дипольний момент молекул залежить від геометричної ізомерії: цис- і транс-ізомерія.

Молекули в транс-формі завжди мають центр симетрії, тому їх дипольний момент дорівнює 0.

Існування поворотних ізомерів молекул також впливає на їх дипольний момент. Наприклад, у молекулі дихлоретану СН2Сl–CH2Cl. Якщо вважати, що зв’язок С–Н не вносить значного вкладу в дипольний момент молекули, то її дипольний момент можна визначити як суму дипольних моментів зв’язків С–Сl. Зв’язок дипольного моменту молекули залежить від кута повороту груп СН2Сl одна відносно іншої


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі, Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі,


φ – кут повороту.


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі

μцис = 3,4D; μтранс = 0.


На величину дипольного моменту дихлоретану впливає температура. Із зростанням температури кількість цис-ізомерів зростає, так як кількість молекул, які можуть перейти через потенціальний бар’єр, зростає.

Зрозуміло, що у випадку дихлоретану завжди є суміш цис- і транс-ізомерів. Тоді


μ2 = с1μ12 + с2μ22,


c1 – концентрація транс-форми, с2 – концентрація цис-форми.

Якщо μ1 = 0, тоді


μ2 = с2μ22; Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі.

Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі = K(T); Kpiв = Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі,


K – стала Больцмана; ΔЕ – величина потенціального бар’єру і


ΔЕ = –KTlnKрів.


По температурній залежності дипольного моменту газу можна знайти концентрації ізомерів, через них знайти Kрів, а черех Kрів – величину потенціального бар’єру, що відділяє два ізомери.

Вивчаючи дипольні моменти молекул, які здатні до поворотної ізомерії, можна одержати відомості про поворотну ізомерію. З дипольних моментів можна судити про геометрію молекул і їх симетрію. Але вирішити однозначно про геометрію молекули, виходячи з дипольних моментів, неможливо, можна лише припустити ту чи іншу форму молекули.

Поляризуємість молекул. Тензор поляризуємості. Якщо речовину помістити в електричне поле (Е), то заряджені частки молекули (електрони і ядра) зміщуються з своїх положень у напрямку силових ліній прикладеного поля. В молекулах виникає індукований дипольний момент, величина якого пропорційна напрузі прикладеного поля: μ2 = α · Е, α – коефіцієнт пропорційності, який характеризує поляризуємість молекули.


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі


тобто поляризуємість молекули вимірюється в одиницях об’єму.

α показує – наскільки сильно деформується електронна оболонка молекули під дією зовнішнього електричного поля. Різні молекули при одному і тому ж значенні Е будуть мати різні α.

α буде скалярною величиною лише в тому випадку, якщо під дією сил електричного поля зміщення електронної густини молекули у всіх трьох взаємно перпендикулярних напрямках буде однаковим.

В загальному випадку зміщення електронної густини у трьох напрямках, як правило, різне: найбільше зміщення електронної густини спостерігається у тому напрямку, який співпадає з напрямком прикладного поля. У загальному випадку:


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі


де x, k, y i z – цілі величини.

αik може бути записане у вигляді тензора


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі,

αхх – зміщення електронної оболонки вздовж осі х, якщо напруга прикладена по осі х;

αху – зміщення по осі х, якщо поле прикладене по осі у;

αхz – зміщення по осі х, якщо поле прикладене по осі z.

Найбільшу величину мають діагональні складові тензора. Крім того, доведено, що компоненти тензора, які симетрично розташовані відносно діагоналі, рівні між собою: αху = αух; αхz = αzх; αуz = αzу – симетричний тензор. Такий тензор можна звести до діагонального вигляду


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі.


Якщо всі три діагональні складові тензора не рівні один одному, то геометричне зображення тензора поляризуємості являє собою 3х-осьовий еліпсоїд. Це випадок анізотропної молекули, яка відноситься до груп низкьої симетрії.

Якщо два з трьох діагональних складових рівні, то геометричним образом такого тензора буде двохосьовий еліпсоїд обертання. Такі молекули відносяться до груп середньої симетрії.

Якщо всі три складові діагонального тензора рівні між собою, тоді еліпсоїд обертання переходить у кулю, і поляризуємість стає скалярною величиною. Такі молекули відносяться до груп вищої симетрії.

Поведінка речовин в електричному полі. Розглянемо явища, які виникають у речовині при розміщенні його в зовнішньому електричному полі. Поля можна розділити на електростатичне, для якого напруга стала, і змінне, для якого напруга з часом змінюється за певним законом. Поведінка речовин у постійному і змінному полях відрізняється.

Розглянемо поведінку речовин у постійному полі.

Якщо речовину помістити в зовнішньому полі, то в речовині виникає явище поляризації – заряджені частинки – ядра і електрони кожної молекули зміщуються з своїх рівноважних положень в напрямку силових ліній поля. В молекулі виникає індукований полем дипольний момент, який буде пропорційний напрузі прикладеного поля: μінд = α · Е, α – називається поляризуємістю, вимірюваною в одиницях об’єму (см3):


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі. (1)


Якщо одиниця об’єму містить N атомів (число Лошмідта), то можна ввести поняття поляризації речовини:


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі (2)


(добуток дипольного моменту окремої молекули на число молекул).

Підставимо у (2) замість με його значення, тоді


Р = NαE. (3)


Полярні молекули речовини мають нескомпенсовані електричні заряди, тому напруга поля в речовині не буде рівна напрузі зовнішнього поля.

Величина, на яку зміниться напруга поля під дією дипольних моментів молекул, може бути визначена діелектричною проникністю ε. Відомо, що якщо речовина знаходиться в зовнішньому електричному полі, то вона характеризується вектором електричної індукції Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі:


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі, (4)


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі – діелектрична проникність, яка характеризує властивості речовини.

Існує цілий розділ фізики, головним завданням якої є знаходження аналітичного зв’язку між макроскопічною характеристикою речовини (Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі) і мікроскопічними характеристиками α і μ. Ці формули мають велике значення, тому щоЕлектричні властивості молекул. Поведінка речовини в зовнішньому електричному полі можна легко виміряти експериментально, а через неї визначити α і μ.

Вся трудність теорії полягає в тому, щоб визначити величину внутрішнього поля, для цього необхідно знати як розміщені молекули одна відносно другої і як вони взаємодіють між собою. Для визначення внутрішнього поля використовують різні моделі, тобто наперед задають розміщення молекул і їх взаємодію. Найпростіша модель – це модель Дебая і Лоренца, згідно якої молекули речовини знаходяться в стані хаосу і не взаємодіють між собою. В цьому випадку


Еў = Е + Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі. (5)


Тоді в (3) підставимо Еў із (5) замість Е:


Р = Nα Еў = Nα(Е + Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі). (6)


З рівняння (4) маємо:


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі (2 рів.); εЕ – Е = 4πР;

Е(ε – 1) = 4πР, (7)

Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі. (8)


Прирівнюємо Р із (6) і (8):

Nα(Е + Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі) = Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі. (9)


У рівняння (9) підставляємо замість Р його значення із (8):


Електричні властивості молекул. Поведінка речовини в зовнішньому електричному поліЕлектричні властивості молекул. Поведінка речовини в зовнішньому електричному полі = Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі. (10)


Відкриваємо в (10) дужки:


NαЕ + Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: