Xreferat.com » Рефераты по биологии и химии » Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

Узнай стоимость написания твоей работы
Нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.)? Обратитесь к нашим специалистам! Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее Гарантии Отзывы

Скляр Александр Александрович

Автореферат диссертации на соискание ученой степени кандидата химических наук

Краснодар 2006

Работа выполнена на кафедре общей и неорганической химии Кубанского государственного университета

Общая характеристика работы

Актуальность работы:

Медь является необходимым следовым элементом в теле человека, при этом большинство ионов меди(II) в человеческой плазме крови найдено в форме смешанных комплексов с молекулами аминокислот, пептидов и других органических молекул. Несмотря на то, что изучение комплексообразования меди(II) с биологически активными лигандами является предметом исследования на протяжении нескольких последних десятилетий, ряд аспектов является до конца невыясненным. Это обусловлено, в первую очередь, сложностью рассматриваемых систем, поскольку процессы протекают в многокомпонентных системах, часто с участием молекул – полимеров, имеющих в своем составе большое количество функциональных групп. Одним из способов решения рассматриваемой задачи является моделирование физиологических процессов на примере взаимодействия ионов металлов, обладающих спектральными свойствами, и лигандов, имеющих в своем составе те же функциональные группы, что и рассматриваемый биологический объект.

Большинство органических лигандов, являющихся аналогами природных соединений, способных взаимодействовать с ионами меди, содержат в своем составе кислород- и (или) азот- содержащие группы, за счет которых и возможна координация. При этом координация может осуществляться различными способами, что связано как со строением молекулы лиганда (взаимным расположением донорных групп), так и с влиянием условий протекания реакции комплексообразования.

Наиболее распространенным методом исследования комплексообразования в растворе является метод потенциометрического титрования, который, обладая рядом положительных характеристик, имеет недостаток, связанный с тем, что выбор схемы равновесия делается, как правило, априорно. Напротив, применение спектральных методов, позволяет конкретизировать состав и строение образующихся в растворе комплексов. Однако извлечение химической информации из спектральных данных представляет собой довольно сложную и не всегда выполнимую задачу. Поэтому актуальной является работа по расширению границ использования спектроскопических методов к исследованию комплексных соединений, усовершенствованию способов обработки спектров с помощью современной вычислительной техники.

Диссертационная работа выполнена в соответствии с темой научно-исследовательской работы кафедры общей и неорганической химии Кубанского государственного университета (№ государственной регистрации 01178695675) в соответствии с координационным планом РАН по направлению 2.17. по теме “Координационные соединения и материалы на их основе” и при финансовой поддержке РФФИ (грант 06-03-32881-а).

Цель и задачи работы.

Целью настоящей работы являлась разработка новых теоретических и экспериментальных подходов для изучения комплексообразования меди(II) с органическими соединениями, содержащими в качестве донорных атомы азота и кислорода.

В ходе выполнения исследования решались следующие задачи:

Разработка методик расчета характеристик комплексных соединений в растворе методами потенциометрического титрования и электронной спектроскопии при наличии равновесий различного типа без ограничения количества и состава частиц.

Изучение зависимости состава и свойств комплексов N-фосфонометилглицина с медью(II) от рН.

Изучение строения комплексов меди(II) с 1,2-дигидро-4Н-3,1-бензоксазинами в растворе.

Определение способа координации галактаровой кислоты с медью(II) по данным ИК спектров.

Научная новизна работы:

С помощью разработанных компьютерных программ обработаны полученные экспериментальные данные, что позволило рассчитать характеристики комплексных соединений, определить строение и свойства соединений меди(II) с рядом органических лигандов, содержащих в качестве донорных атомы кислорода и азота.

Практическая значимость работы. Созданные компьютерные программы расчетов и экспериментальные данные диссертационной работы могут быть использованы в научной деятельности, а также при проведении лекционных и семинарских занятий по химии координационных соединений в Кубанском, Казанском, Ростовском, Иркутском и др. университетах.

Апробация работы. Результаты работы представлены на IV международной научно-практической конференции «Компьютерные технологии в науке, производстве, социальных и экономических процессах» (Новочеркасск, 2003), VII Международного семинаре по магнитному резонансу (спектроскопия, томография и экология) (Ростов н/Д, 2004), IV международной науч.-практ. конференции «Моделирование. Теория, методы и средства» (Новочеркасск, 2004), Национальных Конференциях «Информационно-вычислительные технологии в решении фундаментальных научных проблем и прикладных задач химии, биологии, фармацевтики и медицины»: ИВТН-2004 и ИВТН-2005 (Екатеринбург, 2004, 2005), XXII Международной Чугаевской конференции по координационной химии (Кишинев, 2005), XV Российской студенческой научной конференции «проблемы теоретической и экспериментальной химии» (Екатеринбург 2005), IV Всероссийской конференции молодых ученых “Современные проблемы теоретической и экспериментальной химии” (Саратов, 2003).

Публикации. Основное содержание работы нашло отражение в 14 публикациях.

Структура и объем работы. Диссертация состоит из введения, 3 глав, выводов и списка цитируемой литературы (130 наименования). Работа изложена на 115 страницах, включает 14 рисунков и 13 таблиц.

Основное содержание работы

Во введении обоснована актуальность работы, сформулированы цели и задачи исследования.

В первой главе приведен обзор имеющихся литературных данных о спектроскопических методах изучения комплексных соединений, интерпретации экспериментальных спектров ЭПР, электронных и ИК спектров. Проведен анализ методик исследования строения и свойств и расчета параметров комплексных соединений с использованием ЭВМ.

Во второй главе представлены результаты теоретического исследования, в ходе которого разработана методика определения состава, строения и свойств комплексных соединений металлов на основе совместного применении методов потенциометрического титрования и электронных спектров, предложены новые компьютерные программы для: обработки электронных, ЭПР спектров и pH потенциометрических кривых растворов, содержащих ион металла и лиганд(ы), с учетом возможности образования комплексов с различными формами лигандов; предложена методика разделения электронных спектров комплексов на составляющие методом гауссиан анализа и нахождение спектральных характеристик; определения частот и форм нормальных колебаний комплексных соединений по данным ИК спектров.

В программе обработки спектров и pH кривых в блоке расчета мольных долей компонентов системы применяется метод Бринкли, модифицированный для расчета при известной концентрации ионов водорода. Данный метод добавляет ряд контролирующих инструкций к решению системы уравнений по схеме Ньютона-Рафсона, что исключает получение результатов, не имеющих физического смысла. Блок оптимизации искомых параметров включает в себя методы сканирования, координатного и градиентного спуска.

Таким образом, разработанный нами программный комплекс для интерпретации экспериментальных спектров, позволяет автоматически определять константы устойчивости комплексов из спектров ЭПР, электронных спектров и кривых потенциометрического титрования, а также другие параметры ЭПР и электронных спектров.

Для нахождения числа электронных переходов и их характеристик по данным электронных спектров нами создана программа ГАЭС (Гауссиан Анализ Электронных Спектров), позволяющая находить спектральные параметры компонент теоретического спектра, как в ручном так и в автоматическом режиме.

Разработана методика определения строения комплексных соединений из анализа электронного спектра в области d-d-переходов, в основе которого лежит модель углового перекрывания (МУП), выделяющая радиальные параметры, учитывающие степень связывания или разрыхления σ– и π–связей металл-лиганд и угловые множители, зависящие от геометрии молекулы.

Для сложных молекул MLn энергетические уровни находится суммированием возмущений d-орбиталей, вызываемых каждым из лигандов с учетом ориентации этих орбиталей относительно связей металл-лиганд:

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами (1)

где Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами - , Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами - , Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами - угловые множители, j=1..5 – порядковый номер d-орбитали; i=1..n – порядковый номер лиганда; n-количество лигандов.

При наиболее распространенном октаэдрическом окружении иона металла лигандами угловые координаты лигандов будут иметь значения, приведенные в таблице 1.

Таблица 1.

Угловые координаты лигандов.

Лиганд Θ φ
L1 90 0
L2 90 180
L3 90 90
L4 90 270
L5 0 0
L6 180 0

Расчет угловых множителей по данным угловых координат лигандов (таблица 1) приводит выражения для энергии d – орбиталей комплекса (1) к виду:

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами (2)

Таким образом, приравнивая энергию переходов между d-орбиталями, выраженную через параметры МУП, со значениями этих энергий, найденными из гауссиан анализа экспериментального электронного спектра, получаем систему уравнений для каждого варианта расположения энергетических уровней. Решая полученные уравнения относительно радиальных параметров МУП и анализируя их значения, характерные для координационных соединений, определяется правильный вариант расположения энергетических уровней.

Предложена также методика для расчета частот и форм нормальных колебаний молекул, исходя из данных об их геометрическом строении и силовом поле с использованием решения прямой колебательной задачи путем нахождения собственных значений и собственных векторов в уравнении Шредингера методом приведения к матрице Хессенберга и использованием QR алгоритма с неявными сдвигами. Встроенная в программу база данных по геометрии фрагментов молекул и молярных масс атомов облегчает определение структуры химических соединений, поскольку достаточно изменить одну переменную и тогда все элементы матрицы, содержащей кинетические параметры, использующие ее, пересчитываются автоматически.

В третьей главе приведены результаты экспериментального исследования.

В разделе 3.1 описано изучение бинарных комплексов N-фосфонометилглицина с медью(II) методами потенциометрии и электронной спектроскопии, а также определение влияния аминокислоты (валина) на процесс комплексообразования.

По значениям констант депротонирования лигандов в условиях исследования процессов комплексообразования (температура, ионная сила), определенных нами методом рН метрии, были рассчитаны диаграммы распределения, представленные на рисунке 1.

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

Рисунок 1. Диаграмма распределения различных форм N-фосфономе-тилглицина и валина.

В системе Cu2+-H3PMG константы устойчивости комплексов убывают в ряду Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами, что в первом случае соответствует переходу от тридентатного связывания с образованием двух пятичленных хелатных колец к бидентатному с восьмичленным циклом, а во втором – объясняется стерическими затруднениями при образовании связи с двукратно протонированной фосфоновой группой.

Для тройных систем Cu2+-H3PMG-HVal нами были получены значения констант устойчивости Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами разнолигандных комплексов Cu(PMG)Val2- (lgβ1110 = 19.81(4)) и Cu(HPMG)Val- (lgβ1111 = 26.02(6)) и рассчитаны диаграммы распределения иона металла (рисунок 2). Образованию комплексов Cu(H2PMG)(HVal)+, Cu(HPMG)(HVal), Cu(HPMG)Val-, Cu(PMG)Val2-, по всей видимости, препятствует большая устойчивость при низких значениях рН бис-комплексов с формами HPMG2- и H2PMG-, способными образовывать хелатные комплексы.

Большую устойчивость комплекса Cu(PMG)Val2 по сравнению с Cu(PMG)Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами можно объяснить вхождением в координационную сферу иона металла меньшего по объему по сравнению с PMG3- хелатообразующего валинат-иона, также занимающего два места в экваториальной плоскости комплекса. По сравнению с Cu(Val)2 тройной комплекс устойчив за счет тридентатного характера связывания глифосат-аниона.

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

Рисунок. 2. Диаграммы распределения металла для растворов с соотношениями сCu: сPMG : сVal = 1:1:1 (а) и 1:2:2 (б) (сCu=0.0015 моль/л, 0.1 М KCl).

В электронных спектрах в системе Cu2+-H3PMG при увеличении рН и соотношения сPMG: сCu возрастает оптическая плотность, максимум полосы поглощения смещается в длинноволновую область не превышая значения 14500 см-1, что означает присутствие не более одного атома азота в экваториальной плоскости комплекса, то есть в комплексе Cu(PMG)Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами одна из донорных групп не принимает участия в связывании и один из лигандов координирован бидентатно. Об этом также свидетельствует его константа устойчивости, которая намного ниже ожидаемой при одинаковой координации обоих лигандов.

Добавление в систему валина смещает сигнал в длинноволновую область и при рН > 8 максимум полосы поглощения имеет значение свыше 14500 см-1, что подтверждает нахождение в экваториальной плоскости комплекса двух донорных атомов азота.

Значения констант устойчивости, полученные в ходе компьютерной обработки оптических спектров, соответствуют данным рН метрического титрования, что свидетельствует о корректности выбранной схемы равновесий. Нами предложены следующие способы координации в разнолигандных комплексах:

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

Cu(HPMG)Val- Cu(PMG)Val2–

В разделе 3.2 описано исследование строения комплексов Cu(II) с 2-[2-гидроксифенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином (I) и 2-[2-гидрокси-5-нитрофенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином (II) методами ЭПР и электронной спектроскопии.

По данным ИК спектров установлено, что в реакции комплексообразования участвует именно азометиновая форма лигандов. Данные ЭПР (наличие дополнительной сверхтонкой структуры от двух ядер азота) позволяют предположить следующее строение координационного центра:

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами(Х = H (I); NO2 (II)).

Разложение электронного спектра на Гауссовы составляющие с помощью программы ГАЭС позволяет выделить четыре компоненты, параметры которых приведены в таблице 2, соответствующие d-d переходам.

Приравнивая, полученные в рамках МУП, выражения для энергии переходов между d-орбиталями со значениями ν0 из таблицы 2, получаем системы уравнений для четырех возможных вариантов расположения энергетических уровней:

1) Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами;

2) Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами;

3) Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами;

4) Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами.

Таблица 2.

Параметры полос поглощения отдельных электронных переходов в комплексах меди(II) c соединениями I и II.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты:

№ перехода e, дм3∙моль-1∙см-1 ν0, см-1 δ½, см-1 f, 10-4
I
1 20 14047 1910 10.57
2 39 15422 1078 11.63
3 29