Xreferat.com » Рефераты по биологии и химии » Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

17111 1000 8.023 4 27 19033 1133 8.463 II 1 12 14122 2100 6.972 2 39 15820 1284 13.85 3 23 17928 1036 6.592 4 18 19581 1022 5.089

Значения параметров МУП найдены нами решением полученных систем уравнений и приведены в таблице 3.

Анализ рассчитанных значений параметров МУП позволяет считать вариант (2) более предпочтительным, так как для него выполняется ряд соотношений: Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами>Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами (где l=s, p), поскольку атом азота образует более прочные ковалентные связи; Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами ≈ 3-5 для всех донорных атомов и Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами, характерно для координационных связей меди(II) с N- и O-содержащими донорными группами.

Таблица 3.

Параметры МУП комплексных соединений, рассчитанные по электронным спектрам.

 Вариант

Параметры

Cu(II) + I Cu(II) + II
(1) (2) (3) (4) (1) (2) (3) (4)

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

7100 7100 7100 7100 7100 7100 7100 7100

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

6947 8322 10011 11933 7022 8720 10828 12481

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

1979.8 3011 3317 5719 1628 2901 3656 5722

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

1018.8 2050 5122 6564 801 2074.5 5536 6776

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

2824.3 4543 5810 7251 2681.5 4804 6385 7625

Так как энергия Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами-орбитали может быть меньше энергии Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами-орбитали лишь в случае отсутствия координации в аксиальных положениях, то можно считать, что данные электронной спектроскопии свидетельствуют о неучастии в координации атомов кислорода трифенилкарбинола в растворе и подтверждают предложенную выше структуру.

Таким образом, данные электронных спектров подтверждают структуру комплекса, предложенную выше.

Раздел 3.3 посвящен определению структуры комплекса меди(II) состава Cu(НGala)2×4H2O методом ИК спектроскопии.

Произведенный нами эмпирический анализ и сравнение ИК спектров галактаровой кислоты (ГК) и галактарата меди(II) показал, что при комплексобразовании происходит разрыв водородных связей свободной кислоты, и взаимодействие спиртовых групп (νОНспирт) ГК с ионом металла, причем только одна из карбоксильных групп ГК связывается с ионом меди(II), а другая – остается связанной водородной связью с карбоксильной группой ГК молекулы соседнего комплекса.

Расщепление полосы поглощения, принадлежащей валентным колебаниям карбонильной группы ГК, в спектре комплекса на две полосы поглощения 1618 и 1385 см-1, соответствующие антисимметричным и симметричным валентным колебанием депротонированной карбоксильной группы (νasCOO־ и νsCOO־, соответственно) ГК. Значение ΔνCOO־ равное 233 см-1 и присутствие в ИК спектре галактарата меди полосы средней интенсивности в области 1729 см-1 свидетельствует о монодентатной координации карбоксильной группы с ионом меди(II).

Понижение частот валентных колебаний связей С-О спиртовых групп (νС-Оспирт) в спектре комплекса на ~20 см-1 свидетельствует о взаимодействии спиртовых групп ГК с ионом меди(II), что приводит к изменению системы водородных связей.

На основании вышеизложенного нами предложена следующая структура соединения:

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами,

исходя из которой, было проведено сравнение рассчитанных и экспериментальных данных (таблица 4).

Используемая нами методика пофрагментного расчета частот и форм нормальных колебаний сложных молекул предполагает предварительный расчет отдельных фрагментов участвующих в комплексообразовании, в частности лиганда, с уточнением исходных значений силовых постоянных в ходе расчета.

Таблица 4.

Экспериментальные и рассчитанные значения частот полос поглощения H2Gala и Cu(HGala)2∙4H2O (см-1).

H2Gala Cu(HGala)2∙4H2O Отнесение
Эксперимент Расчет Эксперимент Расчет
3422пл, 3280ш 3570, 3455 3577, 3477пл, 3304, 3160пл 3570, 3400 νOHспирт
2968, 2921, 2870 2962, 2855 2969, 2923, 2857 2962, 2855 νCH
2656, 2560 3577, 3477 2656, 2559пл - νOHкарб
1729 1729 1729 - νC=O
- - 1619 1619 νasCOO¯
1455 1460 1452 1459 δCCH
1422 1412 1422пл 1424 δCОНспирт + δCОНкарб
1375 1376 1365пл 1376 δCCH
- - 1385 1375 νsCOO¯
1310пл, 1296, 1261пл 1310, 1300, 1257 1310, 1298, 1262 1309, 1298, 1255 δCCH + δCОНспирт
1240, 1212, 1240, 1211 1241, 1211 1240, 1211 νC-С,
1123, 1062 1117, 1052пл, 1047 νC-Oспирт
966 988 τCСОНкарб
919 920 - τCООН
862, 830, 801, 720пл, 700, 668, 633, 510, 465, 376, 283, 249, 242пл, 208, 179 пл, 139, 116, 74 879, 845, 802, 720пл, 698, 667, 634, 509, 467, 401, 373пл, 281, 236ш, 208, 179, 140, 119пл, 76 Скелетные колебания (δCCС + τОССС + τОССО + τСССС + δОСО и т.п.)
- - 554, 442 607, 410 νCu-O
- - 330, 152, 125, 334, 155, 128 δ(Cu-лиганд)

Хорошее соответствие результатов расчета экспериментальным данным подтверждает предложенную нами выше структуру координационного окружения иона металла.

Выводы

Разработана методика определения строения и свойств комплексных соединений меди(II) путем совместного применении методов потенциометрического титрования и обработки электронных спектров, показана возможность ее использования для сложных систем, содержащих как бинарные, так и разнолигандные комплексные соединения.

При исследовании систем медь(II) – N-фосфонометилглицин – валин методами потенциометрического титрования и электронной спектроскопии определены значения констант устойчивости разнолигандных комплексов: Cu(PMG)Val2– и Cu(HPMG)Val–. Обнаружено, что образованию соединений Cu(H2PMG)(HVal)+ и Cu(HPMG)(HVal) препятствует большая устойчивость при низких рН бискомплексов с HPMG2- и H2PMG-, способными

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: