Xreferat.com » Рефераты по биологии и химии » Химическая связь. Типы взаимодействия молекул

Химическая связь. Типы взаимодействия молекул

Мельчайшей частицей вещества является молекула, образующаяся в результате взаимодействия атомов, между которыми действуют химические связи или химическая связь. Учение о химической связи составляет основу теоретической химии. Химическая связь возникает при взаимодействии двух (иногда более) атомов. Образование связи происходит с выделением энергии.

Химическая связь – это взаимодействие, которое связывает отдельные атомы в молекулы, ионы, кристаллы.

Химическая связь по своей природе едина: она имеет электростатическое происхождение. Но в разнообразных химических соединениях химическая связь бывает различного типа; наиболее важные типы химической связи – это ковалентная (неполярная, полярная), ионная, металлическая. Разновидностями этих типов связи являются донорно-акцепторная, водородная и др. Между атомами металлов возникает металлическая связь.

Химическая связь, осуществляемая за счет образования общей, или поделенной, пары или нескольких пар электронов, называется ковалентной. В образование одной общей пары электронов каждый атом вносит по одному электрону, т.е. участвует «в равной доле» (Льюис, 1916 г.). Ниже приведены схемы образования химических связей в молекулах H2, F2, NH3 и CH4. Электроны, принадлежащие различным атомам, обозначены различными символами.

Химическая связь. Типы взаимодействия молекул

В результате образования химических связей каждый из атомов в молекуле имеет устойчивую двух- и восьмиэлектронную конфигурацию.

При возникновении ковалентной связи происходит перекрывание электронных облаков атомов с образованием молекулярного электронного облака, сопровождающееся выигрышем энергии. Молекулярное электронное облако располагается между центрами обоих ядер и обладает повышенной электронной плотностью по сравнению с плотностью атомного электронного облака.

Химическая связь. Типы взаимодействия молекул

Осуществление ковалентной связи возможно лишь в случае антипараллельных спинов неспаренных электронов, принадлежащих различным атомам. При параллельных спинах электронов атомы не притягиваются, а отталкиваются: ковалентная связь не осуществляется. Метод описания химической связи, образование которой связано с общей электронной парой, называется методом валентных связей (МВС).

Основные положения МВС

Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

При написании структурных формул электронные пары, обусловливающие связь, часто изображаются черточками (вместо точек, изображающих обобществленные электроны).

Важное значение имеет энергетическая характеристика химической связи. При образовании химической связи общая энергия системы (молекулы) меньше энергии составных частей (атомов), т.е. ЕAB<ЕА+ЕB.

Валентность – это свойство атома химического элемента присоединять или замещать определенное число атомов другого элемента. С этой точки зрения валентность атома проще всего определять по числу атомов водорода, образующих с ним химические связи, или числом атомов водорода, замещаемых атомом этого элемента.

С развитием квантовомеханических представлений об атоме валентность стали определять числом неспаренных электронов, участвующих в образовании химических связей. Кроме неспаренных электронов, валентность атома также зависит от числа пустых и полностью заполненных орбиталей валентного электронного слоя.

Энергия связи – это энергия, которая выделяется при образовании молекулы из атомов. Энергию связи обычно выражают в кДж/моль (или ккал/моль). Это одна из важнейших характеристик химической связи. Более устойчива та система, которая содержит меньше энергии. Известно, например, что атомы водорода стремятся объединиться в молекулу. Это означает, что система, состоящая из молекул Н2 содержит меньше энергии, чем система, состоящая из такого же числа атомов Н, но не объединенных в молекулы.

Химическая связь. Типы взаимодействия молекул

Рис. 2.1 Зависимость потенциальной энергии Е системы из двух атомов водорода от межъядерного расстояния r: 1 - при образовании химической связи; 2 – без ее образования.

На рисунке 2.1 показана энергетическая кривая, характерная для взаимодействующих атомов водорода. Сближение атомов сопровождается выделением энергии, которое будет тем больше, чем больше перекроются электронные облака. Однако в обычных условиях, вследствие кулоновского отталкивания, невозможно достичь слияния ядер двух атомов. Значит, на каком-то расстоянии вместо притяжения атомов, будет происходить их отталкивание. Таким образом, расстояние между атомами r0, которому отвечает минимум на энергетической кривой, будет соответствовать длине химической связи (кривая 1). Если же спины электронов у взаимодействующих атомов водорода одинаковы, то будет происходить их отталкивание (кривая 2). Энергия связи для различных атомов изменяется в пределах 170–420 кДж/моль (40–100 ккал/моль).

Процесс перехода электрона на более высокий энергетический подуровень или уровень (т.е. процесс возбуждения или распаривания, о котором говорилось ранее) требует затраты энергии. При образовании химической связи происходит выделение энергии. Для того, чтобы химическая связь была устойчивой, необходимо, чтобы увеличение энергии атома за счет возбуждения было меньше энергии образующейся химической связи. Иными словами, необходимо, чтобы затраты энергии на возбуждение атомов были скомпенсированы выделением энергии за счет образования связи.

Химическая связь, кроме энергии связи, характеризуется длиной, кратностью и полярностью. Для молекулы, состоящей более чем из двух атомов, существенными являются величины углов между связями и полярность молекулы в целом.

Кратность связи определяется количеством электронных пар, связывающих два атома. Так, в этане Н3С–СН3 связь между атомами углерода одинарная, в этилене Н2С=СН2 – двойная, в ацетилене НСºСН – тройная. С увеличением кратности связи увеличивается энергия связи: энергия связи С–С составляет 339 кДж/моль, С=С - 611 кДж/моль и CºC - 833 кДж/моль.

Химическая связь между атомами обусловливается перекрыванием электронных облаков. Если перекрывание происходит вдоль линии, соединяющей ядра атомов, то такая связь называется сигма-связью (σ-связь). Она может быть образована за счет двух s-электронов, s- и p-электронов, двух px-электронов, s и d электронов (например Химическая связь. Типы взаимодействия молекул ):

Химическая связь. Типы взаимодействия молекул

Химическая связь, осуществляемая одной электронной парой, называется одинарной. Одинарная связь – всегда σ-связь. Орбитали типа s могут образовывать только σ-связи.

Связь двух атомов может осуществляться более чем одной парой электронов. Такая связь называется кратной. Примером образования кратной связи может служить молекула азота. В молекуле азота px-орбитали образуют одну σ-связь. При образовании связи pz-орбиталями возникают две области  Химическая связь. Типы взаимодействия молекулперекрывания – выше и ниже оси х:

Такая связь называется пи-связью (π-связь). Возникновение π-связи между двумя атомами происходит только тогда, когда они уже связаны σ-связью. Вторую π-связь в молекуле азота образуют ру-орбитали атомов. При образовании π-связей электронные облака перекрываются меньше, чем в случае σ-связей. Вследствие этого π-связи, как правило, менее прочны, чем σ-связи, образованные теми же атомными орбиталями.

р-орбитали могут образовывать как σ-, так и π-связи; в кратных связях одна из них обязательно является σ-связью: Химическая связь. Типы взаимодействия молекул.

Таким образом, в молекуле азота из трех связей одна - σ-связь и две - π-связи.

Длиной связи называется расстояние между ядрами связанных атомов. Длины связей в различных соединениях имеют величины десятых долей нанометра. При увеличении кратности длины связей уменьшаются: длины связей N–N , N=N и NºN равны 0,145; 0,125 и 0,109 нм (10-9 м), а длины связей C-C, C=C и CºC равны, соответственно, 0,154; 0,134 и 0,120 нм.

Между разными атомами чистая ковалентная связь может проявляться, если электроотрицаельность (ЭО)1 атомов одинакова. Такие молекулы электросимметричны, т.е. «центры тяжести» положительных зарядов ядер и отрицательных зарядов электронов совпадают в одной точке, поэтому их называют неполярными.

Химическая связь. Типы взаимодействия молекул

Если соединяющиеся атомы обладают различной ЭО, то электронное облако, находящееся между ними, смещается из симметричного положения ближе к атому с большей ЭО:

Химическая связь. Типы взаимодействия молекул

Смещение электронного облака называется поляризацией. В результате односторонней поляризации центры тяжести положительных и отрицательных зарядов в молекуле не совпадают в одной точке, между ними возникает некоторое расстояние (l). Такие молекулы называются полярными или диполями, а связь между атомами в них называется полярной.

Полярная связь – разновидность ковалентной связи, претерпевшей незначительную одностороннюю поляризацию. Расстояние между «центрами тяжести» положительных и отрицательных зарядов в молекуле называется длиной диполя. Естественно, что чем больше поляризация, тем больше длина диполя и больше полярность молекул. Для оценки полярности молекул обычно пользуются постоянным дипольным моментом (Мр), представляющим собой произведение величины элементарного электрического заряда (e) на длину диполя (l), т.е. Химическая связь. Типы взаимодействия молекул.

Дипольные моменты измеряют в дебаях Д (Д = 10-18 эл. ст. ед. × см, т.к. элементарный заряд равен 4,810-10 эл. ст. ед., а длина диполя в среднем равна расстоянию между двумя ядрами атомов, т.е. 10-8 см) или кулонометрах (Кл×м) (1 Д = 3,33·10-30 Кл×м) (заряд электрона 1,6·10-19 Кл умноженный на расстояние между зарядами, например, 0,1 нм, тогда Мр = 1,6·10-19×1×10-10 = 1,6·10-29 Кл · м). Постоянные дипольные моменты молекул имеют значения от нуля до 10 Д.

У неполярных молекул l = 0 и Мр = 0, т.е. они не обладают дипольным моментом. У полярных молекул Мр > 0 и достигает значений 3,5 – 4,0 Д.

При очень большой разности ЭО у атомов имеет место явная односторонняя поляризация: электронное облако связи максимально смещается в сторону атома с наибольшей ЭО, атомы переходят в противоположно заряженные ионы и возникает ионная молекула:

Химическая связь. Типы взаимодействия молекул

Ковалентная связь становится ионной. Электроасимметрия молекул возрастает, длина диполя увеличивается, дипольный момент возрастает до 10 Д.

Суммарный дипольный момент сложной молекулы можно считать равным векторной сумме дипольных моментов отдельных связей. Дипольный момент обычно принято считать направленным от положительного конца диполя к отрицательному.

Предсказать полярность связи можно с помощью относительной ЭО атомов. Чем больше разность относительных ЭО атомов, тем сильнее выражена полярность: DЭО = 0 – неполярная ковалентная связь; DЭО = 0 – 2 – полярная ковалентная связь; DЭО = 2 – ионная связь. Правильнее говорить о степени ионности связи, поскольку связи не бывают ионными на 100%. Даже в соединении CsF связь ионная только на 89%.

Химическая связь, возникающая за счет перехода электронов от атома к атому, называется ионной, а соответствующие молекулы химических соединений – ионными. Для ионных соединений в твердом состоянии характерна ионная кристаллическая решетка. В расплавленном и растворенном состоянии они проводят электрический ток, обладают высокой температурой плавления и кипения и значительным дипольным моментом.

Если рассматривать соединения элементов какого-либо периода с одним и тем же элементом, то по мере передвижения от начала к концу периода преимущественно ионный характер связи сменяется на ковалентный. Например, у фторидов 2-го периода LiF, BeF2, CF4, NF3, OF2, F2 степень ионности связи от фторида лития постепенно ослабевает и заменяется типично ковалентной связью в молекуле фтора.

Таким образом, природа химической связи едина: принципиального различия в механизме возникновения ковалентной полярной и ионной связей нет. Эти виды связи отличаются лишь степенью поляризации электронного облака молекулы. Возникающие молекулы отличаются длинами диполей и величинами постоянных дипольных моментов. В химии значение дипольного момента очень велико. Как правило, чем больше дипольный момент, тем выше реакционная способность молекул.

Механизмы образования химической связи

В методе валентных связей различают обменный и донорно-акцепторный механизмы образования химической связи.

Обменный механизм. К обменному механизму образования химической связи относятся случаи, когда в образовании электронной пары от каждого атома участвует по одному электрону.

В молекулах Н2, Li2, Na2 связи образуются за счет неспаренных s-электронов атомов. В молекулах F2 и Cl2 – за счет неспаренных р-электронов. В молекулах HF и HCl связи образуются s-электронами водорода и p-электронами галогенов.

Особенностью образования соединений по обменному механизму является насыщаемость, которая показывает, что атом образует не любое, а ограниченное количество связей. Их число, в частности, зависит от количества неспаренных валентных электронов.

Из квантовых ячеек N и Н можно видеть, что атом азота имеет 3

N ¯ H
2s 2p 1s

неспаренных электрона, а атом водорода – один. Принцип насыщаемости указывает на то, что устойчивым соединением должен быть NH3, а не NH2, NH или NH4. Однако существуют молекулы, содержащие нечетное число электронов, например, NO, NO2, ClO2. Все они характеризуются повышенной реакционной способностью.

На отдельных стадиях химических реакций могут образовываться и валентно ненасыщенные группы, которые называются радикалами, например, H, NH2, O, CH3. Реакционная способность радикалов очень высока и поэтому время их существования, как правило, мало.

Донорно-акцепторный механизм

Известно, что валентно насыщенные соединения аммиак NH3 и трифторид бора BF3 реагируют друг с другом по реакции

NH3 + BF3 = NH3BF3 + 171,4 кДж/моль.

Рассмотрим механизм этой реакции:

Химическая связь. Типы взаимодействия молекул Видно, что из четырех орбиталей бора три заселены, а одна - остается вакантной. В молекуле аммиака заселены все четыре орбитали азота, из них три – по обменному механизму электронами азота и водорода, а одна содержит электронную пару, оба электрона которой принадлежат азоту. Такая электронная пара называется неподеленной электронной парой. Образование соединения H3N · BF3 происходит за счет того, что неподеленная электронная пара аммиака занимает вакантную орбиталь фторида бора. При этом уменьшается потенциальная энергия системы и выделяется эквивалентное количество энергии. Подобный механизм образования называют донорно-акцепторным, донором – такой атом, который отдает свою электронную пару для образования связи (в данном случае атом азота); а атом, который предоставляя вакантную орбиталь, принимает электронную пару, называется акцептором (в данном случае атом бора). Донорно-акцепторная связь является разновидностью ковалентной связи.

В соединении H3N · BF3 азот и бор – четырехвалентны. Атом азота повышает свою валентность от 3 до 4 в результате использования неподеленной электронной пары для образования дополнительной химической связи. Атом бора повышает валентность за счет наличия у него свободной орбитали на валентном электронном уровне. Таким образом, валентность элементов определяется не только числом неспаренных электронов, но и наличием неподеленных электронных

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: