Микроорганизмы

Подавляющее большинство ныне живущих организмов состоит из клеток. Лишь немногие примитивнейшие организмы – вирусы и фаги ре имеют клеточного строения. Поэтому важнейшему признаку все живое делится на две империи доклеточные ( вирусы и фаги) и клеточные ( бактерии, грибы, растения и животные).

Представления о том, что все живое делится на два царства - животных и растений, ныне устарело. Современная биология признает разделение на пять царств - прокариот или дробянок, зеленых растений, грибов, животных, отдельно выделяются царство вирусов- доклеточных форм жизни.

Однако из самых увлекательных страниц из истории биологии является охота за микроорганизмами.

В то время, когда родился Левенгук, микроскопов еще не было, а были только грубые ручные лупы, через которые самое большое, что можно был увидеть – эту десятицентовую монету, увеличенную до этот голландец не занимался неустанно

шлифовкой своих замечательных стекол, ему вероятно, до самой смерти

не пришлось бы увидеть ни одного существа размерами меньше

сырного клеща, однажды он посмотрел через свою игрушечную, оправленное

в золото, линзу на каплю чистой дождевой воды и увидел, тогда то и пробил час Левенгука этот прев ратник из Дельфта проник в новый мир фантастических

мельчайших существ, которые жили, рождались, боролись и умирали, совер-

шенно незримые и не известные никому от начала времен. Это были своего

рода зверки в продолжение многих веков терзавшие и истребляющие целые

поколения людей, которые в десять миллионов раз крупнее их самих. Это были существа более ужасные, чем огнедышащие драконы и чудовищные многоголовые гидры, о которых повествовалось в сказках и легендах,

Это был невидимый, скрытный, но неумолимый жестокий, а порою и дружественный мир, в который Левенгук заглянул первый из всех людей всего мира. Он

наводил свою линзу на разные сорта воды, на воду выдержанную в закрытом помещении лаборатории, на воду из горшка, поставленную на самой верхушки дома, из холодного колодца воды в его саду. Ему никогда не надоедало смотреть, как «Они оживленно вьются друг около друга , точно куча москитов в воздухе, от чего зависит острый вкус перца» - задал он однажды себе вопрос и высказал следующею догадку – Должно быть, это на перчинках есть маленькие невидимые шипы, которые колют язык, когда ешь перец. Существуют ли в действительности эти шипы? Он начал возится с сухим перцем. Он чихал, потел, но ему никак не удавалось получить маленькую перчинку, чтобы е можно было сунуть под микроскоп. Он положил перец на несколько недель в воду, чтобы он размяк, И только тогда с помощью двух тонких иголочек ему удалось отщепить крошечную, почти невидимую, частицу перца и всосать е вместе с каплей воды в свою волосяную стеклянную трубочку. Он посмотрел в микроскоп, там было нечто такое, что ошеломило даже этого смелого человека, Предполагаемые шипы были сразу забыты. С захватывающим любопытством маленького мальчика, он не отрываясь, смотрел на потешное зрелище. Невероятное количество крошечных животных всевозможных пород быстро металось по всем направлениям,

После этого опыта Левенгук решил написать великим людям в Лондон. Но ему никто не поверил, Левенгук был оскорблен. Тогда он написал письмо Королевскому обществу Гуку и Нехеми Англии, В этом письме были изложены все опыты и в качестве доказательства, он написал, что некоторые люди могут подтвердить, Тогда Королевское общество поручило Роберту Гру соорудить самые лучшие микроскопы и приготовить перечный настой из высшего сорта чрного перца, 15 ноября 1677 года Роберт Гук принс в собрание свой микроскоп, а в месте с тем и большое волнение, , ибо оказалось, что Левенгук не соврал, Да, они были здесь, эти волшебные зверки, Почтные члены собрания вскакивали со своих мест и восклицали, Этот человек поистине великий исследователь, Это был день славы Левенгука,

В 1831 году, спустя 32 года после смерти блистательного Спалланцани( один из великих охотников за микробами), охота за микробами находилась в состоянии полного застоя, Сооружались чудесные микроскопы, но не было человека, который достоин был бы в них смотреть,

В один из октябрьских дней 1831 года девятилетний мальчик испуганно выскочил из толпы от стонов одного фермера Николя. Ему прижигали укус бешеного волка, раскалнным железом. Этот мальчик был Луи Пастер, сын кожевника в Арбу а (название местности во Франции), – «Отец, от чего бесятся волки и собаки, И от чего человек умирает, когда его кусает бешеная собака» - спрашивал Луи. Его отец был владелец небольшого кожевенного завода, старый сержант наполеоновской армии. Он видел десятки тысяч человек, погибших от пуль, но не имел ни малейшего представления о том, почему человек умирает от болезни,

Между тем дело клонилось, к тому, чтобы отложить микробов в долгий ящик вместе с дронтом и другими забытыми животными Швед Линней, один из восторженных классификаторов много работавший над составлением карточного каталога всех живых существ, опускал руки, когда дело доходило до «ничтожных зверушек».

-Они слишком малы, слишком туманны, и никто никогда о них ничего определнного не узнает - «отнесм их просто к категории хаоса» - говорил Линней.

Защищал их только знаменитый круглолицый немец Эренберг, затевавший пустые и шумные споры о том, есть ли у маленьких животных желудки: представляют ли они собой целых животных или являются только частью других, более крупных животных, действительно ли они животные, или быть может маленькие растения. В то время как Пастер склонял свой плоский нос и широкий лоб над беспорядочной кучей кристаллов. Маленькие микробы снова стали входить в известность благодаря работам двух исследователей одиночек: одного из Франции, другого из Германии. Скромный, но оригинальный француз Каньян де ля Тур в 1837 году впервые сунул свой нос в большие чаны на пивных заводах. Он вынудил из одного такого чана несколько капель пены и посмотрев на не в микроскоп, заметил, что находящиеся в ней крошечные шарики дрожжей выпускают из себя боковые отростки, а эти отростки дают от себя новые крошечные шарики.

-Они живые, эти дрожжи воскликнул он.

-Они могут размножаться так же, как и другие живые существа. Каньяр был уверен, что они своей жизнедеятельностью превращают ячмень в алкоголь.

Однажды Пастер взял каплю больного вина положил под микроскоп и посмотрел. Он там не оказалось дрожжей. И вдруг он увидел на поверхности вина в бутылки, из которой была взята капля, в которой нет дрожжей какие-то маленькие комочки. Пастер взял один из комочков растр в капли чистой воды и положил под микроскоп. Он увидел огромную массу крошечных палочкообразных существ. После этого он догадался, что эти палочкообразные существа являются таким же бродило для молочной кислоты, как дрожжи для алкоголя.

Пастер решил изучать эти палочки. «Невозможно изучать эти пало - чки в грязном массиве, взятом прямо из чанов» - подумал Пастер.-« Я должен придумать для них особую питательную среду, чтобы иметь возможность наблюдать, как они растут, размножаются и производят потомство». Он пробовал распустить эти серые комочки в чистой сахарной воде, но ничего не вышло, они не захотели в ней размножаться.

«Они нуждаются в более питательной пище»- подумал он, и после целого ряда неудач изобрл, наконец, для них странный питательный бульон

: он взял сухих дрожжей прокипятил их в чистой воде и хорошенько процедил: затем он добавил туда небольшое количество сахара и немного углекислой извести, чтобы предохранить бульон от окисления. Острием тонкой иголки он выловил один серый комочек из сока большой свекольной массы, осторожно посеял этот комочек в свом бульоне и поставил в термостат. Оставалось ждать. Самое ужасное в охоте за микробами, что результаты не всегда получаются сразу, и приходится иногда мучительно и долго ждать. И Пастеру тоже приходилось ждать. Так как он был профессором и деканом научной части нормальной школы в Лилле, где он впервые столкнулся с вопросом о микробах. Он читал лекции на научные темы, подписывал разные бумаги, но и забегал на минуточку посмотреть в термостат. И когда наступило время смотреть, он решался. Он взял из термостата одну каплю и положил под микроскоп. Вс поле линзы кишело и вибрировало миллионами крошечных танцующих палочек.

- Они размножались. Они живые – прошептал он про себя. Он повторял этот опыт десять дней подряд. И вс что сводилось к одному, что это вредители. Что эти палочки портят брожение вина.

В скоре Луи Пастер со своей женой переехал в Париж. Однажды он взял колбу и наполнил е молоком до половины, вскипятил, затем запаивал узкое горлышко. Он хранил е три года. Когда открыл то, убеждался, что молоко хорошо сохранилось. После этого он много фантазировал над миром без микробов, в котором достаточно кислорода, но этот кислород не может быть использован для разрушения мртвых растений и животных, потому что нет микробов, вызывающие окисления. Он представлял кошмарную картину пустынных, безжизненных улиц покрытых горами не гниющих трупов.

Многие эволюционисты, ботаники считали, что Пастеру не удастся устроить, так чтобы при наличии обыкновенного воздуха в бульоне тотчас же не стали развиваться дрожжевые грибки, плесень, вибрионы и другие микроскопические существа. Пастер старался найти способ ввести не нагретый воздух в кипячный бульон, предохранив бульон от попадания в него микробов. Но он не мог ничего подходящего придумать.

В один прекрасный день к нему в лабораторию зашел профессор Баляр (открыл Бром).

Баляр сказал Луи Пастеру: « Послушайте мой друг, ведь ни вы, ни я не верим, что микробы могут самостоятельно зарождаться в дрожжевом бульоне, мы оба знаем, что они попадают или заползают туда вместе с воздушной пылью, не так ли ?»

-« Да конечно, но»- возразил Луи Пастер.

Постойте минуточку:- перебил Баляр – Почему вы не хотите попробовать такую штуку: налейте в колбу бульон и вскипятите его, потом отверстие колбы поставьте в таком положении, чтобы пыль туда никак не могла попасть, а воздух мог бы входить в каком угодно количестве.

Но как это сделать ?- спросил Пастер.

Очень просто , - Возьмите колбу, налейте в не бульон, затем расплавьте горлышко колбы на паяльной лампе и вытяните его в длинную, тонкую спускающею к низу трубку. Придайте трубке такую форму, какую предат лебедь своей шее, когда хочет что–нибуть взять из воды.


После этого Пастер вс понял.

Значить, микробы не могут попасть в колбу, потому, что пылинки, на которых они сидят, не могут падать снизу в верх. И он принялся за работу. Приготовив вс Пастер проделал этот опыт. Вскоре он посмотрел на результат, в котором он увидел превосходный, прозрачный дрожжевой бульон. Не оставалось сомнений в том, что система Баляра доказывает, что самопроизвольное зарождение – вздор и чепуха.

Вскоре Пастер доказал, что именно микробы являются причиной многих болезней. Так на научной вечеринке в Сорбоне Пастер выступил с популярным докладом в присутствии знаменитого романиста Александра Дюма. Он представил им в этот вечер научный водевиль, после которого его слушатели возвращались домой в страхе и унынье. Он показывал им световые изображения различных видов микробов; он таинственно тушил в зале огни и затем внезапно прорезал тьму ярким лучом света.

-Посмотрите на тысячи танцующих пылинок в свете этого луча! – восклицал он. Ведь воздух этого зала кишит пылинками, тысячами миллионами этих ничтожных, ничего собой не представляющих пылинок. Но не относитесь к ним слишком пренебрежительно: они несут иногда с собой болезнь и смерть-тиф, холера, жлтую лихорадку и множество других болезней.

Пауль Эрлих был очень веслым человеком. Он выкуривал до 25 сигар в день, не прочь был выпить кружку пива со своим старым лабораторным служителем и десяток другой кружек с немецкими, английскими и американскими коллегами. Будучи вполне современным человеком, он вс же напоминал нечто средневековое своей знаменитой, часто повторяемой фразой

- « Нужно научится стрелять по микробам волшебными пулями». Благодаря своей веслости и скромности Эрлих легко приобретал друзей но, будучи вместе с тем и не глупым человеком, он старался, чтобы в число этих друзей попадали иногда и влиятельные люди. Все свои знания и идеи П. Эрлих черпал из книг. Вся его жизнь протекала среди научной литературы Его дом, и лаборатория были заполнены книгами.

В 1901 году он прочитал об исследованиях Альфонса Лаверана, и с этого, собственно, начались его восьмилетние поиски магических пуль. Лаверан как известно открыл микроб малярии, а в последнее время упорно работал над трипанозонами. Они вызывают у лошадей болезнь Кадера с поражением всей задней части тела. Этого было достаточно, чтобы воспламенить Эрлиха.

- Вот великолепный микроб для моих целей. Во-первых, он крупных размеров и его легко наблюдать и, во-вторых, он прекрасно размножается в мышах и убивает их с замечательной регулярностью. Он убивает мышей всегда. В 1902 году П.Эрлих приступил к делу. Он привл в боевой порядок всю свою армию блестящих, сверкающих ослепительных кросок.

Однажды сидя на свом единственном стуле в кабинете он прочитал в каком-то химическом журнале о новом патентованном средстве. Оно называлось « атоксил»- это означает «не ядовитый».В его состав входило бензельное кольцо, шесть атомов углерода, четыре атома водорода, немного аммония, окись мышьяка. От атоксила умирали мыши, поражнные сонной болезнью. В своей лаборатории П. Эрлих установил, что атоксил может быть видоизменн. Его можно переделывать в бесконечное, почти неограниченное количество препаратов мышьяка, совершенно не нарушая комбинации бензола с мышьяком. После этого П. Эрлих пошл в кабинет своего главного химика Бертхейма.

- Атоксил может быть видоизменн. И Эрлих стал чертить на бумаги тысячи разнообразнейших фантастических схем - Бертхейм никак не мог устоять перед этим. Они проделывали опыты с теми шестью ста шести различными препаратами мышьяка.

Но вскоре обнаружилось, что уничтожая свирепых трипанозом болезни Кадера, это чудесное лекарство, одновременно превращая кровь мышей в воду или убивало их, связывая в злокачественную желтуху.

Сжигая себя с двух концов – т.к. ему было уже за пятьдесят, и смерть была не за горами. П. Эрлих наткнулся на свой знаменитый препарат «606», который ему , конечно, никогда в жизни не удалось бы найти без помощи Бертхейма. Этот препарат «606» носил название «диоксидиамминоарсенобензолдигидрохлорид». Его убийственное действие на трипанозом было пропорционально длине его название. Первое же вливание совершенно очищала кровь мышонка от этих свирепых возбудителей болезни Кадера, убивая их до последнего, чтобы ни один не мог пойти и рассказать, эту страшную новость своим собратьям. Этот препарат был абсолютно без вреден. В 1906 году П. Эрлих прочл об открытии германским зоологом Шаудином тонкого бледного спирахеобразного микроба и доказал, что он то и является возбудителем сифилиса. Шаудин считал, что спирахету можно отнести к родственникам трипанозомов. И тогда Эрлих подумал и сказал – «Если спирахета – кузинатрипанозоме, то «606» должен действовать и на спирахету. И он сейчас же это проверил на кролике, результат оказался прекрасным.

После этого он пишет письмо своему другу доктору Конрату Альту. «Не будешь ли ты так любезен, использовать мой новый препарат «606» на человеке, страдающем сифилисом».

Альт ответил: - «с удовольствием».

Наступил 1910 год, самый славный год в жизни П. Эрлиха. В один из дней этого года появился на научном конгрессе в Кенигсберге и был встречен овацией. Он сообщил о том, как была найдена, наконец, магическая пуля. Он изобразил весь ужас сифилиса, приводившего больных к смерти или в убежище для идиотов то есть псих больница. Он рассказал несколько случаев, когда больные были уже приговорены к смерти. Одного вливания «606» было достаточно, чтобы вернуть их к жизни и поставить на ноги. Они прибавляли в весе по двенадцать килограммов. Он сообщил об одном несчастном, у которого глотка была так ужасна, что в течение нескольких месяцев его кормили через трубку. В два часа дня ему было сделано вливание «606», а к ужину он уже ел бутерброд с колбасой.

Таким образом: Левенгук впервые открыл микробы, и доказал, что они находятся абсолютно везде; Луи Пастер доказал, что именно в них находится опастность; Пауль Эрлих смог изобрести «магическую пулю» против трипанозом.

Микроорганизмы обитают практически везде: в воде, почве, воздухе, на поверхностях растений и животных, в пищеварительных трактах животных и самого человека; многовековые ледники Антрактиды: вечная мерзлота Чукотки; кипящие гидротермальные источники; глубочайшие впадины мирового океана; воды охлаждающих контуров ядерных реакторов, заселены микроорганизмами. Сейчас известно около 2500 видов бактерий. Бактерии относятся к прокариотам – это самые простые, мельчайшие и наиболее распространнные организмы. Бактериальные клетки имеют ядра, покрытого ядерной оболочкой и набора хромосом, характерного для эукариот. У бактерии отсутствует процесс размножения.

В основе морфологии клеток прокариот лежат две основные формы – шар и цилиндр. Различают кокки – шарообразные клетки и их группировки, прямые палочки-бацилы, короткие изогнутые – вибрионы, извитые – спириллы и спиротехты. Известные бактерии имеющие форму куба, плоского диска и треугольника.

Строение бактериальной клетки: клеточная стенка; цитоплазматическая мембрана, окружающию цитоплазму с нуклеидом и рибосомом. Цитоплазматическая мембрана у некоторых прокариот образует выпячивание внутрь клетки – инвагинации или образует мембранные тельца. В клетке, в зависимости от особенности метаболизма могут присутствовать мембранные структуры необходимые, например, для осуществления фотосинтеза.

В зависимости от строения клеточной стенки, бактерии делятся на грамположительные и грамотрицательные, названные по имени бактериолога Грама, открывшего особенности окраски клеток бактерий. Грамположительные бактерии окрашиваются по методу Грама в фиолетовый цвет (к ним относятся стофилококки, стрептококки, возбудители сибирской язвы, столбняка, газовой гангрены и др.) Грамотрицательные не окрашиваются по этому методу (это менингококки, кишечная палочка и др.) Клеточная стенка представляет собой сетчатую структуру, различающихся у разных групп бактерии толщиной (многослойная и однослойная) и химическим составом. Основным компонентом, обеспечивающим ригидность клеточной стенки, гетерополимер «пептидогликан». Он состоит из углеводородного компонента и короткого пептида. Но имеются бактерии микроплазмы, не имеющие никакой клеточной стенки.

Цитоплазматическая мембрана, прокариотической клетки представляет собой белково-липидный комплекс, в котором 50-75% белков и 15-45% липидов. В настоящее время специалисты сходятся во мнении, что мембрана представляет собой жидкокристалическую структуру и не является симметричной, как это кажется под электронным микроскопом. Благодаря такой структуре она выполняет свои многочисленные функции. Прежде всего, барьерная, транспортная (переносит ионы и молекулы в клетку и из клетки) и энергетическая функции. На мембране локализованы ферменты, осуществляющие синтез молекул, обладающих высокоэнергетическими связями, энергия, которая нужна для катализа биологических реакций клетки. В цитоплазматической мембране «встроена» и дыхательная цепь – система переносчиков электронов. Поверхность клетки может быть покрыта полисахаридной или белковой капсулой. Для передвижения в живой среде некоторые клетки прокариот, как и эукариот обладают одним-двумя или многочисленными жгутиками. Иногда клетка бывает покрыта многочисленными ворсинками, которые наряду с капсульным материалом играют важную роль в прикреплении клетки к поверхности чего-либо.

Цитоплазма бактерий окружена плазматической мембраной, на внутренней поверхности которой локализованы многочисленные ферменты. В цитоплазме обнаруживают большое количество рибосом и гранулярных включений, а также один или два участка, где концентрируется ДНК.

Жгутики и фимбрии. Некоторые бактерии имеют очень тонкие и прочные спиральные жгутики, в несколько раз более длинные, чем сами клетки. Жгутики совершают быстрые вращательные движения и способствуют движению бактерий. Бактерии для своих размеров передвигаются очень быстро, за одну секунду они преодаливают расстояние равное примерно 20 диаметром самой бактериальной клетки.

Жгутики бактерий длинные 12-13 миллиметра, тонкие и волнообразно изогнутые. Диаметр их обычно 10-12 нм, поэтому их нельзя увидеть в световой микроскоп. У некоторых бактерий жгутики равномерно распределены по всей поверхности клетки, у других прикреплены к одному или к обоим концам. Каждый жгутик состоит из одной жсткой молекулы белка флагеллина.

Фимбрии (ворсинки) короче и прямее, чем жгутики: их диаметр около 7, 5-10нм. Фимбрии характерны главным образом для грамотрицательных бактерий. Полые ворсинки образуются на клетках во время конъюгации, однако их точная функция пока неизвестна. Возможно, они переносят ДНК или способствуют соединению клеток. В большинстве случаев ворсинки помогают, бактериям прикрепляется к определнным мембранам.

Несмотря на простоту организации, бактерии могут реагировать на определнные раздражители, двигаясь в направлении увеличивающейся концентрации пищи или кислорода. Бактерии обладают специфической чувствительностью к питательным различным веществам, например сахаром. После того как клетки получают сигнал о «привлекающих» (аттрактантах) или «отталкивающих» (репеллентах) веществах, они могут выбрать нужное им направление движения. Аттрактанты вызывают вращение жгутиков против часовой стрелки, а репелленты – наоборот, по часовой стрелки. Таким образом «пробежки» совершаются за счт вращения жгутиков, а «кувыркание» - за счт вращательного движения. При длительном движении жгутики работают вместе и собираются в пучок на заднем конце клетки, несмотря на то что расположены практически по всей поверхности.

Совершенно иной способ движения обнаружен у нитчатых цианобактерий и у бактерий, лишнных жгутиков. Движение этих микроорганизмов представляет собой скольжение, но может включать и вращение вдоль продольной оси клетки. Короткие сегменты, отчленнные от колонии цианобактерий могут скользить со скоростью порядка 10 мкм/с. Движению способствуют выделения слизи через споры клеточной оболочки и образование сократительных волн на е внешней поверхности.

Размножаются микроорганизмы делением клетки на две равные или почкованием, что особенно характерно для многих дрожжей. Только некоторым бактериям свойственно образование специальных «органов» размножения (цианобактерии, миксобактерии, актиномицеты). Для переживания неблагоприятных условий, некоторые бактерии в свом жизненном цикле имеют стадию покоя. У одних бактерий такая стадия покоя связана с образованием одной или реже нескольких эндоспор. После разрушения клетки- эти споры попадают в окружающею среду и т.к., они крайне устойчивы к всякого рода внешних воздействий (температуре, радиации, высушиванию и др) то могут сохранятся десятки, сотни и даже тысячи лет. При попадание в благоприятные условия такие споры прорастают, давая вегетативные клетки. Некоторые другие бактерии образуют покоящие формы в виде цист, экзоспор и микроспор.

Для существования микроорганизмов необходимы источники углерода и энергии. По типу потребляемого углерода подразделяются на гетеротрофов (используют углерод в органической форме) и автотрофов (используют углерод углекислот). По типу источника энергии их можно разделить на фототрофов (используют солнечный свет) и хемотрофов (у них источник энергии – окисление органических или неорганических веществ). По типу источника электронов, используемых в окислительно – восстановительных реакциях различают органотрофов и литотрофов, получающих электроны из неорганических соединений (H2O и H2S). У большинства бактерий окислительно – восстановительные процессы проходят с использованием атмосферного кислорода, т.е. отщепляющихся при окислении субстрата, водород соединяется с кислородом воздуха. Такой тип дыхания называется аэробным. У некоторых микроорганизмов акцептором водорода является кислород, содержащийся в связанном состоянии в неорганических соединениях азота или серы – в нитратах или сульфатах. Такое дыхание проходит в отсутствии атмосферного воздуха и называется анаэробным дыханием. Среди эукариот и прокариот известны микроорганизмы способные переключатся с кислородного существования на бескислородное их называют факультативными анаэробами (кишечная палочка). Наряду с этим существует и строгие анаэробы, которые при контакте с кислородом воздуха погибают. К таким относятся метанообразующие бактерии и др. В отличие от животных, микроорганизмы не могут поглощать высокомолекулярные вещества. Для их роста и развития необходимы низкомолекулярные вещества. Для роста и развития необходимы кроме органических и неорганических веществ: N.P.Na.K.Fe и другие макроэлементы, а также микроэлементы Co.Mo.Zn.Cu.W и другие. Как правило, для каждого из требуемых веществ, клетка имеет свою транспортную систему, которая локализована в цитоплазматической мембране. Важнейшим после углерода элементом для бактерий является азот. Часть микроорганизмов приобрела способность использовать его в газообразном состоянии. Этот процесс называется азотофикацией и имеет огромное экологическое и практическое значение.

Я попробую охарактеризовать более известные группы микроорганизмов.

а) Гетеротрофы- они не способны синтезировать органические соединения из простых неорганических, а должны получать их в готовом виде. Самая большая группа гетеротрофных бактерий – это «сопробионты». Они питаются мртвым органическим материалом. Сопробионты бактерии и грибы ответственные за разложение и круговорот органического вещества в почве; многие образуемые при этом соединения имеют специфический запах.

б) Хемоавтотрофные бактерии получают энергию, необходимую для осуществления синтетических реакций, путм окисления неорганических веществ, которые обеспечивают их энергией подобно свету у фотосинтезирующих организмов. Бактерии, обитающие в глубоководных кратерах при температуре выше 360 градусов тоже хемосинтетики. Они получают энергию превращая сульфид водорода в серу, и кроме того обеспечивают энергией целое сообщество организмов сред – щих в полной темноте океанических глубин.

в) Архебактерии – это строгие анаэробы, метанообразующие бактерии – они обитают в желудочно – кишечном тракте жвачных животных, в сточных водах, болотах и в глубине моря. Большинство запасов природного газа связанно с деятельностью метанообразующих бактерий. Метанобактерии отличаются большим морфологическим разнообразием. Однако К.Уозом и его коллегами из Иллинского университета было доказано, что различные формы метанобактерий имеют гамотологические последовательные рРНК, что свидетельствует об их родстве. Удивительным оказался факт, что эти последовательности оснований резко отличаются от таковых в рРНК других бактерий и эукариот. На основании изложенных фактов было высказано предположения, что метанобактерии появились на Земле около 3-х миллиардов лет назад, когда атмосфера была бескислородой, но обогащнной CO2 и H2. Сейчас они обитают только в пределнных специфических условиях. Отличие метанобактерий от других групп бактерий привели к тому, что их можно отнести к отдельному царству – архебактерий.

А теперь можно подвести итог на основе вышеизложенного. Какие микробы приносят пользу, а какие вредят и даже вызывают многие смертельные, иногда болезни человека, животных и растений.

а) Различные группы микроорганизмов участвуют в отдельных этапах разложения и круговорота веществ, происходящих в почве. Многие бактерии и грибы располагают углеродосодержащиеся соединения и выделяют в атмосферу СО2.Наиболее важны органические вещества растительного – целлюлоза, лигнин, пектины, крахмал и

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: