Xreferat.com » Рефераты по биологии и химии » Что и как закодировано в мРНК

Что и как закодировано в мРНК

Лев Павлович Овчинников, доктор биологических наук

Московский государственный университет им. М.В. Ломоносова

КРАТКАЯ ИСТОРИЯ ОТКРЫТИЯ мРНК

В начале 50-х годов Ф. Крик сформулировал свою знаменитую центральную догму молекулярной биологии, согласно которой генетическая информация от ДНК к белкам передается через РНК по схеме ДНК РНК белок. Процесс синтеза РНК на матрице ДНК называется транскрипцией, процесс синтеза белка на матрице РНК - трансляцией.

В 1956-1957 годах А.Н. Белозерский и А.С. Спирин показали, что при существенных различиях в нуклеотидном составе ДНК из разных организмов нуклеотидный состав суммарных РНК весьма сходен. На основании этих данных они пришли к сенсационному заключению о том, что суммарная РНК клетки не может выступать в качестве переносчика генетической информации от ДНК к белкам, поскольку не соответствует ей по своему составу. Вместе с тем они заметили, что при значительном изменении нуклеотидного состава ДНК при переходе от организма к организму наблюдается некоторый небольшой сдвиг нуклеотидного состава РНК в ту же сторону. Это позволило предположить существование минорной фракции РНК, которая полностью соответствует по своему нуклеотидному составу ДНК и которая может быть истинным переносчиком генетической информации от ДНК к белкам. Целенаправленный поиск такой РНК, предпринятый сразу в нескольких ведущих лабораториях мира, увенчался успехом в 1961 году. В том году С. Бреннер, Ф. Жакоб и М. Месельсон, с одной стороны, и Ф. Гро и Дж. Уотсон с сотрудниками - с другой, обнаружили ДНК-подобную РНК у бактерий. В течение последующих двух-трех лет аналогичная РНК была найдена в самых разных эукариотических организмах. Для ее обозначения был предложен термин "информационная, или матричная, РНК (мРНК)".

НЕКОТОРЫЕ СВОЙСТВА мРНК

По своим свойствам мРНК про- и эукариот существенно различаются. Бактериальные мРНК очень нестабильны. Период их полураспада составляет всего несколько минут. Эти мРНК обычно не претерпевают существенных модификаций после синтеза и могут начинать транслироваться в белок еще до полного завершения их транскрипции (рис. 1, а). Быстрое вовлечение в белковый синтез, с одной стороны, и нестабильность мРНК бактерий - с другой, обеспечивают оперативный контроль белкового синтеза на уровне транскрипции. Содержание мРНК в бактериальной клетке составляет всего 1-2% общего количества РНК в клетке.

Эукариотические мРНК довольно стабильны. Период их полураспада измеряется часами и даже сутками. Их транскрипция и трансляция пространственно разобщены. Транскрипция протекает в ядре, а трансляция - в цитоплазме (рис. 1, б ). Эукариотические мРНК синтезируются в виде предшественников и проходят в своем биогенезе стадию довольно сложного созревания, или процессинга. Процессинг включает в себя: 1) кэпирование 5'-конца, заключающееся в присоединении к этому концу мРНК так называемой шапочки (кэп-структуры), 2) полиаденилирование 3'-конца и, наконец, 3) сплайсинг - вырезание протяженных внутренних участков мРНК, так называемых интронов, и ковалентное воссоединение оставшихся фрагментов (экзонов) через обычную фосфодиэфирную связь (подробнее см. в статье: Гвоздев В.А. Регуляция активности генов при созревании клеточных РНК // Соросовский Образовательный Журнал. 1996. N 12. С. 11-18). Все перечисленные стадии созревания происходят в клеточном ядре, и в цитоплазму поступают уже процессированные, зрелые мРНК. Транспорт мРНК из ядра в цитоплазму осуществляется через ядерные поры. Все стадии процессинга и транспорта - регулируемые процессы. Время от начала синтеза мРНК до ее выхода в цитоплазму составляет не менее десяти минут. Высокая стабильность мРНК и сравнительно длительное время от начала синтеза до выхода в цитоплазму делают невозможной оперативную регуляцию белкового синтеза на уровне транскрипции. В связи с этим в клетках эукариот существенно возрастает роль регуляции белкового синтеза на посттранскрипционном уровне, а эукариотические клетки содержат значительно больше мРНК, чем бактериальные. Часть таких мРНК может находиться в неактивном (репрессированном или маскированном) состоянии.

мРНК прокариот очень часто являются полицистронными, то есть содержат информацию для нескольких полипептидных (белковых) цепей. Зрелые эукариотические мРНК, как правило, моноцистронны и кодируют только одну полипептидную цепь. Те части молекулы мРНК, в которых закодированы белки, называются транслируемыми областями. Однако помимо транслируемых областей в мРНК имеются достаточно протяженные последовательности, не кодирующие белок. Общая длина этих нетранслируемых областей порой может достигать или даже превышать длину транслируемых областей. Нетранслируемые области находятся на обоих концах молекул мРНК и соответственно называются 5'- и 3'-НТО. В прокариотических полицистронных мРНК имеются также внутренние межцистронные нетранслируемые области, располагающиеся между транслируемыми областями. Наряду с информацией о последовательности аминокислот в белке молекулы мРНК содержат информацию, определяющую их поведение в клетке (активность и время жизни, внутриклеточное распределение). Эта информация находится в основном в нетранслируемых областях мРНК.

ОБЩИЕ СВОЙСТВА ГЕНЕТИЧЕСКОГО КОДА, КОДОВЫЙ СЛОВАРЬ

Проблема кодирования в молекулярной биологии была впервые поставлена Г. Гамовым еще в начале 50-х годов, то есть задолго до открытия самой мРНК. Размышляя над тем, как линейная последовательность четырех различных нуклеотидов в нуклеиновой кислоте может определять последовательность двадцати разных аминокислот в белке, Гамов предположил, что генетический код является триплетным, то есть три соседних основания полинуклеотидной цепи (он оперировал с ДНК) однозначно определяют включение одной определенной аминокислоты в белок. Он же поставил вопросы и о других свойствах генетического кода: перекрываемости, запятых между кодонами, вырожденности.

В 1961 году Ф. Крик и С. Бреннер экспериментально показали, что делеция (вырезание) одного нуклеотида, дающая мутантный фенотип, может быть скомпенсирована вставкой нуклеотида вблизи делеции. Этот результат можно было объяснить предположив, что при делеции нуклеотида происходит сдвиг рамки считывания за местом делеции, и это приводит к полному изменению смысла всей последующей информации; при вставке одного нуклеотида вблизи места делеции происходит восстановление первоначальной рамки считывания и первоначального смысла закодированной информации. Таким образом, описанные эксперименты доказали, что генетический код не содержит запятых. В опытах с делециями и вставками Крик, Барнет, Бреннер и Уотс-Тобин (1961) также подтвердили, что код является триплетным или кратен трем, поскольку три делеции или три вставки нуклеотидов давали нормальный фенотип.

Опыты Г. Виттманна по замене единичных оснований в РНК вируса табачной мозаики показали, что такие замены могут приводить к замене только одной аминокислоты в белке. Это однозначно свидетельствовало в пользу того, что генетический код не перекрывается. Другими словами, каждое основание РНК входит в состав лишь одного триплета (кодона).

Полная расшифровка генетического кода, проведенная М. Ниренбергом и С. Очоа, была закончена к 1966 году. Она показала, что 61 из 64 возможных триплетов мРНК кодируют одну из двадцати стандартных аминокислот, включающихся в белок (рис. 2). Таким образом, генетический код оказался сильно вырожденным, и многие аминокислоты кодируются двумя или более кодонами. Три триплета, не участвующие в кодировании аминокислот, - UAA , UAG и UGA - оказались сигналами на окончание синтеза белка (сигналами терминации).

Перенос генов из одних организмов в другие и их последующая успешная экспрессия доказали, что генетический код почти всегда универсален. Другими словами, все живые организмы от бактерий до млекопитающих пользуются в основном одним и тем же кодовым словарем. (Правда, некоторые нарушения универсальности генетического кода обнаружены в митохондриях.)

Все триплеты в транслируемой области мРНК, которые кодируют определенную аминокислоту, узнаются в рибосомах специфическими молекулами тРНК с присоединенными к ним аминокислотами. Точность узнавания весьма велика за счет существования специальной системы коррекции ошибок. Терминирующие кодоны узнаются специальными белками - факторами терминации. Надежность узнавания этих триплетов не столь высока, и иногда терминирующий триплет может прочитываться как кодон аминокислоты. Для повышения надежности процесса терминации терминирующие кодоны обычно дублируются. Первым при этом, как правило, выступает кодон UAA (основной терминирующий триплет), а вслед за ним на очень близком расстоянии в той же рамке считывания следует один из запасных терминирующих триплетов - UAG или UGA .

После расшифровки генетического кода в 1966 году вопрос о том, что и как закодировано в мРНК, казалось, был полностью исчерпан. С течением времени, однако, стало очевидно, что это далеко не так.

ПЕРЕКОДИРУЮЩИЕ СИГНАЛЫ В мРНК ИЛИ ВТОРОЙ ГЕНЕТИЧЕСКИЙ КОД

Инициирующий кодон узнается только в определенном контексте. Если мы зададим вопрос, можно ли, имея перед собой последовательность нуклеотидов какой-либо мРНК, таблицу генетического кода и зная, что трансляция мРНК идет в направлении от 5'- к 3'-концу, а белковая цепочка растет от N-конца к C-концу, написать последовательность аминокислот белка, закодированного в этой мРНК, то будем вынуждены ответить на поставленный вопрос отрицательно. Исходя из перечисленных сведений нельзя определить, с какого места мРНК мы должны начать переводить ( транслировать ) последовательность нуклеотидов в последовательность аминокислот.

Что и как закодировано в мРНК

Рис. 2. Кодовый словарь. Красным цветом отмечены терминирующие кодоны

Уже очень давно стало ясно, что начало трансляции мРНК ( инициация ) не совпадает с началом самой мРНК. Свидетельством этому служат полицистронные мРНК бактерий, в которых инициация белкового синтеза происходит на каждом цистроне, а также присутствие в мРНК про- и эукариот 5'-концевых нетранслируемых последовательностей. Вместе с тем установлено, что биосинтез белка как у про-, так и у эукариот всегда начинается с одной и той же аминокислоты - метионина. Можно было бы предположить, что трансляция информации, закодированной в мРНК, начинается с первого от 5'-конца метионинового кодона, которым является триплет AUG . Для многих моноцистронных эукариотических мРНК это действительно так, хотя бывают и исключения. Однако это совсем не так для полицистронных мРНК бактерий, где инициация часто происходит на триплетах AUG, отстоящих очень далеко от начала мРНК. Этим триплетам может предшествовать большое количество других AUG, на которых инициации не происходит. Более того, оказалось, что первый метионин в белке в некоторых случаях включается не на метиониновом кодоне AUG, а на кодоне GUG , который соответствует в таблице генетического кода аминокислоте валину.

Иногда инициация с метионина может происходить и на других кодонах: AUA и AUU (кодонах изолейцина), UUG и, возможно, CUG (кодонах лейцина). Стало очевидным, что для узнавания кодона в качестве инициирующего важен не только сам и, может быть, не столько сам кодон, но какой-то контекст, делающий его инициирующим. Оказалось, что у прокариот для эффективной инициации кодон должен находиться на вершине шпилечной структуры, образуемой смежными комплементарными участками мРНК, а предшествовать ему примерно за 3-10 нуклеотидов должна полипуриновая последовательность (последовательность Шайна-Дальгарно, SD) (рис. 3, а). Эта последовательность комплементарна рибосомной РНК и, по-видимому, способствует связыванию рибосом в районе инициирующего кодона. Вторичная структура мРНК в районе инициирующего кодона и как следствие - степень доступности инициирующего кодона для инициации может изменяться в процессе трансляции соседних цистронов или при взаимодействии мРНК со специальными регуляторными белками (см. ниже).

У эукариот инициация происходит, как уже говорилось, чаще всего с первого AUG, однако только в том случае, если этот AUG находится в оптимальном контексте: за два нуклеотида до него обязательно должен находиться пурин (A или G), а непосредственно за ним должен следовать G. На эффективность инициации у эукариот определенное влияние могут оказывать также нуклеотиды и в других положениях вблизи инициирующего кодона. Самым оптимальным для узнавания инициирующего кодона у млекопитающих считается следующее его окружение: GCCGCCA / GCCAUGGA / CU (инициирующий триплет подчеркнут, а обязательные для инициации нуклеотиды выделены жирным шрифтом).

Что и как закодировано в мРНК

Рис. 3. Некоторые примеры отступления от общих правил трансляции генетической информации: узнавание инициирующего кодона на мРНК бактерий (а); прочитывание терминирующего кодона UGA как кодона аминокислоты селеноцистеина (б ); сдвиг рамки считывания на -1 при трансляции ретровирусной РНК (в); сдвиг рамки считывания на +1 при трансляции мРНК бактериального фактора терминации трансляции RF-2 (г); прыжок рибосомы на 50 нуклеотидов при трансляции мРНК гена 60 бактериофага Т4 (д). Рекодирующие сигналы на мРНК обозначены красным цветом. Дальнейшие пояснения см. в тексте

Если первый AUG в эукариотической мРНК находится не в оптимальном контексте, он пропускается и инициация начинается со следующего AUG. Для такой инициации очень важно также наличие кэп-структуры на 5'-конце мРНК и, как ни странно, поли(А) последовательности на противоположном конце молекулы. Кэп-структура и поли(А) последовательность узнаются специфическими белками, которые также необходимы для инициации. При таком способе инициации трансляции у эукариот последовательность мРНК как бы просматривается (сканируется) с начала мРНК (от ее кэп-структуры) для поиска кодона AUG в оптимальном контексте. Такая инициация получила название "кэп-зависимая инициация по сканирующему механизму". Следует, однако, заметить, что на некоторых мРНК эукариот инициация происходит не путем сканирования мРНК с 5'-конца, а за счет непосредственного узнавания определенного внутреннего AUG. Для такого узнавания требуется весьма протяженная предшествующая последовательность мРНК. Эта последовательность узнается особыми клеточными белками, которые способствуют инициации трансляции по механизму "внутренней инициации". По такому механизму инициируется трансляция на многих вирусных РНК, а также на некоторых клеточных мРНК, кодирующих очень важные регуляторные белки, например факторы роста фибробластов. Содержание этих белков обычно очень мало, а увеличение их количества в клетке может сопровождаться трансформацией клеток в раковые. Некоторые вирусы, генетическая информация которых считывается по механизму внутренней инициации трансляции, способны выключить инициацию трансляции клеточных мРНК по сканирующему механизму и, таким образом, переключать белоксинтезирующий аппарат клетки на синтез собственных белков.

Контекст может изменить значение кодона внутри цистрона. Долгое время полагали, что непосредственно в белок включаются только двадцать стандартных аминокислот, приведенных в таблице генетического кода (см. рис. 2). Другие многочисленные минорные аминокислотные остатки, обнаруживаемые в белках, появляются в них уже после синтеза белка в результате так называемых посттрансляционных модификаций некоторых из двадцати стандартных аминокислот. Сравнительно недавно, однако, было показано, что аминокислота селеноцистеин (очень редкая, но функционально очень важная аминокислота) непосредственно включается в белок. Возникает закономерный вопрос, как же закодирована эта аминокислота. Ведь значение всех 64 возможных кодонов уже четко определено, и все они используются в кодировании двадцати стандартных аминокислот и сигналов терминации.

Исследования показали, что селеноцистеин кодируется UGA (терминирующим кодоном в таблице генетического кода), если за ним находится особая стимулирующая последовательность. Эта последовательность может отстоять от UGA на очень большом расстоянии - иногда она может быть на расстоянии 200 нуклеотидов и находиться в 3'-нетранслируемой области мРНК (рис. 3, б ).

Некоторые мРНК содержат сигналы на изменение рамки считывания. Некоторые мРНК содержат в транслируемой области терминирующие кодоны, но эти кодоны успешно обходятся за счет изменения рамки считывания перед ними или непосредственно на них. Рамка может сдвигаться на -1, +1 и + 2. Существуют специальные сигналы в мРНК, изменяющие рамку считывания. Так, сдвиг рамки трансляции на -1 на РНК ретровируса происходит на специфической гептануклеотидной последовательности перед шпилечной структурой в мРНК (рис. 3, в). Для сдвига рамки на +1 на мРНК бактериального фактора терминацинации RF-2 важны нуклеотидная последовательность на месте сдвига (кодон UGA), последующий кодон, а также предшествующая им последовательность, комплементарная к 3'-концевой последовательности рибосомной РНК (аналог последовательности Шайна-Дальгарно) (рис. 3, г).

Считывание мРНК в пределах одного цистрона не всегда является непрерывным. Первоначально считалось, что последовательность нуклеотидов в мРНК всегда читается непрерывно от инициирующего до терминирующего кодона. Однако оказалось, что при трансляции мРНК гена

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: