Xreferat.com » Рефераты по биологии и химии » Определение легколетучих элементов методом ЭТААС по технике дозирования суспензий образцов на никелевом модификаторе

Определение легколетучих элементов методом ЭТААС по технике дозирования суспензий образцов на никелевом модификаторе

в случае внесения раствора нитрата никеля требуется 0,5–1,0 мкг никеля для стабилизации элементов, а в случае никельсодержащего активированного угля достаточно 0,1 мкг никеля. Дальнейшее увеличение массы вносимого в графитовую печь никеля не приводит к увеличению аналитического сигнала (для As и Sb наблюдается монотонное уменьшение сигнала, начиная с 4 мкг).

Наши исследования показали, что эффективная термостабилизация аналитов в графитовой печи в присутствии

(а) – никельсодержащий активированный уголь

и (б) – раствор нитрата никеля

Рисунок 4 – Влияние никеля на аналитический сигнал элементов

сорбента-модификатора достигается при соотношении масс никель/аналит, равном ~102, что на порядок меньше по сравнению с раствором нитрата никеля.

Эффективность модификатора матрицы также существенно зависит от возможности проведения определения элементов в присутствии мешающих компонентов. Изучение зависимостей АС элементов при этих условиях показало, что присутствие хлорид-ионов практически не влияет на АС мышьяка и сурьмы, в случае селена и теллура наблюдается незначительное снижение сигналов, до 5% относительно, в присутствии хлорид-ионов в количестве 1,0 г/л и более. Карбонат-ионы незначительно повышают АС элементов. В случае теллура происходит небольшое снижение АС. Присутствие сульфат-ионов в незначительных количествах приводит к снижению АС. Такая же закономерность наблюдается и для широко используемого модификатора: смеси нитратов палладия и магния

Сравнительный анализ свойств модификатора на основе Pd(NO3)2+Mg(NO3)2 с никельсодержащим активированным углем показал, что разработанная нами композиция не уступает, а по некоторым показателя и превосходит «универсальный» палладий-магниевый модификатор (табл. 5).

Таблица 5 – Модифицирующие свойства

никельсодержащего активированного угля

и смеси нитратов палладия и магния

Элемент Pd(NO3)2 + Mg(NO3)2 Ni(NO3)2 + C
ТТО, ºС ТАТ, ºС ТТО, ºС ТАТ, ºС

As

Te

Sb

Se

1200

700

1200

1100

2300

2300

2400

2300

1500

1300

1400

1200

2300

2000

2200

2200

Термодинамические исследования термохимических процессов, протекающих в атомизаторе

Расчеты многокомпонентного высокотемпературного гетерогенного равновесия проведены при давлении 1 атм в диапазоне температур 100–1900оС с помощью программы HSC-4 (Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Version 4.0. Outokumpu Research Oy Information Service. Finland), имеющей собственный банк термодинамических свойств индивидуальных веществ*. При этом учитывали вероятность образования в термохимических процессах потенциально возможных, при данных температурах, газообразных и конденсированных индивидуальных веществ (табл. 6) и условия идеального перемешивания и контакта всех компонентов исследованных систем.

Мышьяк. Конденсированные оксиды мышьяка уже при низких температурах восстанавливаются до элементарного мышьяка. Это обеспечивает возможность образования разбавленного конденсированного раствора мышьяка с металлическим никелем и углеродом и задержку термического испарения мышьяка до температур 1200оС. После этих температур начинается переход As в газовую фазу в атомарном виде и, в незначительном количестве, в виде AsO(Г) (рис. 5а).

*Расчеты проводились и обсуждались с участием профессора Пупышева А.А. (УГТУ-УПИ, г. Екатеринбург)

Таблица 6 – Параметры исследованных

термодинамических систем

Исследуе-мые

системы

Исходный заданный

состав, моль

Конденсирован-ные вещества

Максималь-ные температуры пиролиза

эксп./расчет, оС

NiАУ

с мышьяком

3,6∙10-5 (Ar) +

+ 2,3∙10-6 (O) +

+ 3,41∙10-8 (Ni) +

+ 5,2∙10-6 (С) +

+ 1,3∙10-11 (As)

AsXOY, Ni(AsXO)Y, Ni, NiCO3, NiO, Ni3C, As, C, 1500/1200

NiАУ

с селеном

-//- + 1,01∙10-11 (Se) NiCO3, NiO, NiSeO3, Se, SeXOY, NiSeX, Ni3C, Ni, C 1200/1300

NiАУ

с теллуром

-//- + 6,3∙10-12 (Te) NiCO3, NiO, TeO2, NiXTeY, Ni3C, Ni, C, Te 1300/1200

NiАУ

с сурьмой

-//- + 2,9∙10-12 (Sb) NiCO3, NiO, SbxOy, Ni3C, Ni, C, NiSb, Sb 1400/1300

Теллур. После низкотемпературного восстановления теллур образует с никелем интерметаллические соединения, входящие в состав разбавленных конденсированных растворов на основе металла модификатора и углерода. Но эти интерметаллические соединения не обладают высокой термической стабильностью и выше 400–600оС разлагаются с выделением элементарного теллура, остающегося в составе конденсированного раствора. Выше 1200оС конденсированный раствор начинает разлагаться, и теллур переходит в газовую фазу в атомарном виде (рис. 5б).

Сурьма. При низкой температуре оксиды сурьмы восстанавливаются; после чего сурьма образует антимонид никеля, входящий в состав разбавленного раствора на основе

 

Рисунок 5 – расчетные графики изменения состава исследуемых систем (в нормированных молях – Mn)

от температуры: As + Niмод (а); Te + Niмод (б);

Sb + Niмод (в), Sе + Niмод (г), Sе + Niмод (д) без учета образования конденсированных растворов

никеля и углерода. При температурах выше 800оС начинается разложение антимонида никеля, но сурьма продолжается оставаться в составе конденсированного раствора до 1300оС (рис. 5в).

Селен. Для селена после низкотемпературного восстановления прогнозируется образование селенидов никеля, связанных с соответствующими конденсированными растворами. Хотя указанные селениды не являются термически устойчивыми, после их разложения элементарный селен сохраняется в составе разбавленного конденсированного раствора до 1300оС. Отметим, что высокотемпературные потери элемента возможны в виде атомарного Se и CSe(Г), разлагающегося при температуре атомизации селена (рис. 5г).

Экспериментальные данные показали, что при использовании никельсодержащего активированного угля наблюдается, в отличие от традиционного способа введения химических модификаторов в виде растворов солей, более высокий уровень температур термостабилизации аналита в графитовой печи, достижимый при меньших массовых соотношениях металлический модификатор/аналит.

Максимально допустимые температуры стадии пиролиза, спрогнозированные разработанной термодинамической моделью и полученные экспериментально, дают весьма удовлетворительную сходимость. Следует заметить, что в отличие от теории, на экспериментальной пиролизационной зависимости селена наблюдается небольшой минимум в районе 500–700ºС. Этот факт и занижение теоретических значений в некоторых случаях, вероятнее всего, обусловлены спецификой структурных и химических свойств используемого модификатора, которые предопределяют несколько иное протекание взаимодействий с аналитом, чем это предполагается моделью. К тому же участие макро- и микроэлементов, содержащихся в активированном угле, на уровне не ниже 10-2% масс в данном случае не учитывалось в теоретических расчетах. Кроме того, используемая углеродсодержащая основа является сложнейшей смесью весьма реакционно-способных химических веществ. Эти факторы могут несколько изменить реальную картину термохимических процессов в сравнении с теоретическими расчетами на основе термодинамических данных для чистого углерода (элементарный, графит и т.п.).

Кинетические исследования процессов атомизации элементов

Определение значений энергии активации (Еа) проведено по разработанной нами экспериментальной схеме измерений, основанной на определении зависимости скорости процесса атомизации от температуры по измеренным аналитическим сигналам на их начальном участке.

Отработка предлагаемого подхода и определение отрезка времени (от момента достижения установленной температуры атомизации), на котором нет выноса атомов, проводилась на основе хорошо воспроизводимой и изученной системы атомизации серебра. Временной интервал ∆τ продолжительностью 0,25–0,30 с использовался нами при изучении механизма атомизации элементов в присутствии модификаторов, так как при таком значении достигается наилучшее соответствие полученных экспериментальных значений Еа для атомизации серебра с литературными (табл. 7).

Таблица 7 – Кинетические параметры исследованных

систем

Элемент Еа, ккал/моль
без модификатора с раствором нитрата никеля с никельсодержащим активированным углем
эксп. литер.*

Ag

As

Se

Sb

Te

60 ± 6

52 ± 5

56 ± 5

53 ± 5

59 ± 6

66

79

49

56

47

80 ± 8

83 ± 8

85 ± 8

75 ± 7

79 ± 7

82 ± 8

94 ± 8

80 ± 8

*Литературные источники из списка литературы диссертации

Рассчитанные по экспериментальным данным энергии активации элементов без модификатора соответствуют процессам испарения элементов в виде мономеров (табл. 7). В присутствии никельсодержащего активированного угля значения Еа существенно выше по сравнению с системами без модификаторов, что свидетельствует о кардинальном изменении термохимического процесса образования атомов от испарения элемента к термодеструкции устойчивой конденсированной структуры C-Ni-А (где А – аналит).

Следует заметить, что энергии активации, полученные с применением раствора нитрата никеля и никельсодержащего активированного угля, совпадают между собой. Это свидетельствует о протекании сходных процессов разложения структур никель-элемент, но полученные кинетические данные не отражают способность модификатора задерживать испарение элементов до более высоких температур. Сопоставление полученных результатов с термодинамическими данными позволило сделать вывод о том, что главный выигрыш в термостабилизации элементов в случае Ni-содержащего активированного угля происходит за счет образования конденсированных растворов между компонентами модификатора и элементами. Термодинамические расчеты, проведенные без учета возможности образования конденсированных растворов элементов с компонентами никелевого модификатора, показывают резкое ухудшение термической стабильности для всех элементов. Например, в случае селена после низкотемпературного разложения селенидов никеля начинается испарение элемента в виде димера, атомарного Se и CSe(Г) уже с 400оС (рис. 5д).

Прямое ЭТААС определение элементов в объектах окружающей среды

С учетом проведенных исследований были оптимизированы следующие условия:

- масса модификатора – 10 мг (для анализа вод) и 30 мг (для растительных материалов;

- содержание никеля в модификаторе – 1%;

- температуры стадий пиролиза и атомизации (табл. 5);

- приготовление суспензий: модификатор + 1 мл образца воды и модификатор + 5–20 мг высушенного и измельченного растительного материала + 1,5 мл воды + 0,1 мл конц. HNO3 + + 0,1 мл H2O2.

Разработанная схема прямого ЭТААС определения элементов в растительных объектах с использованием никельсодержащего активированного угля по технике дозирования суспензии апробирована при определении As в стандартном образце водорослей морских (ламинарий) ГСО 8243-2003. Содержание мышьяка, определенное экспериментально (32,4 ± 2,1 мг/кг для n = 5 и Р = 0,95), хорошо согласуется с аттестованным значением (32,8 ± 1,2 мг/кг). Следует отметить, что никельсодержащий модификатор способствует выравниванию условий атомизации элементов из стандартных растворов и суспензий проб, что, в свою очередь, делает возможным применения простого способа определения градуировочной зависимости – по серии водных стандартных растворов.

Схема прямого ЭТААС определения As, Se, Sb и Те в природной воде с использованием никельсодержащего активированного угля и техники дозирования суспензии была апробирована на образце воды из озера Карасун (г.Краснодар) (табл. 8).

Таблица 8 – Результаты определения As, Se, Sb и Те

в воде озера Карасун (г. Краснодар)

Элемент Найдено, мкг/л Предел обнару-жения (ПО), мкг/л
по градуировоч-ному графику по методу добавок

As

Se

Sb

Te

Te (введено 30,0 мкг/л)

6,6 ± 0,2

22,7 ± 0,5

3,6 ± 0,2

Меньше ПО

32 ± 2

6,7 ± 0,3

23,0 ± 0,7

3,8 ± 0,3

Меньше ПО

35 ± 3

1,7

1,9

1,9

4,5

Определение сурьмы в воде методом ЭТААС

с предварительным концентрированием

Предварительное исследование сорбционных характеристик никельсодержащей композиции было проведено на примере сурьмы с использованием “batch”-системы собственного изготовления. Полученные результаты свидетельствуют о том, что никель обладает сравнительно невысокими сорбционными свойствами по отношению к гидриду сурьмы (~30 мкг/г при СNi = 5%). Увеличение содержания металла в 50 раз повышает сорбционную емкость композиции в 3 раза. Предварительное восстановление никеля в токе водорода при повышенных температурах незначительно улучшает сорбционные характеристики исследуемого материала. Следует отметить, что сам активированный уголь обладает емкостью, достаточной для концентрирования сурьмы в аналитических целях при ее определении в природных объектах на уровне ПДК, а добавка никеля способствует формированию модифицирующих свойств композиции, обеспечивающих последующее ЭТААС определение элементов.

Никельсодержащий активированный уголь, используемый для предконцентрирования гидрида сурьмы, обеспечивает снижение предела обнаружения (1,9 нг/мл и 0,048 нг/мл соответственно для прямого и гидридного методов), что необходимо при анализе объектов с меньшими содержаниями элементов, чем предел обнаружения прямого метода ЭТААС.

ВЫВОДЫ

Методами порометрии, электронной микроскопии, рентгенофотоэлектронной спектроскопии изучены особенности синтеза Ni-содержащих материалов на основе активированного угля. Получены их физико-химические характеристики, свидетельствующие об универсальности модифицирующего действия композиции при ЭТААС определении легколетучих элементов.

Изучены термостабилизирующие свойства никельсодержащих модификаторов по отношению к определяемым элементам. Лучшая термическая стабильность (1500, 1300, 1400 и 1200ºС для As, Te, Sb и Se соответственно), оптимальные аналитические характеристики и наибольшая чувствительность достигаются при использовании Ni-содержащего активированного

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: