Xreferat.com » Рефераты по цифровым устройствам » Разработка системы синхронизации положения траверсы гидравлического пресса усилием 75000тс

Разработка системы синхронизации положения траверсы гидравлического пресса усилием 75000тс

1 АНАЛИЗ ОБЪЕКТА ПРОЕКТИРОВАНИЯ

В данной курсовой работе разработана система синхронизации положе­ния траверсы гидравлического пресса усилием 75000тс. Необходимость раз­работки такой системы объясняется тем, что в процессе штамповки из-за эксцентричного нагружения пресса происходит перекос траверсы относи­тельно нижнего штампа с заготовкой. Из-за перекосов траверсы появляется клиновидность получаемых заготовок, т.е. ухудшаются их качественные параметры, требуется дополнительная обработка в механическом цехе, что ведет к повышению затрат на производство продукции. Причины возникновения эксцентриситета нагрузки: несимметричность форм штампуемых изделий, неравномерный нагрев заготовки, неравномерное остывание из-за специфики формы изделия. Т.к. данные причины являются неустранимыми, то поддержание параллельности траверсы относительно стола необходимо осуществлять с помощью системы синхронизации.

Модернизация системы синхронизации позволит получать штампованные заготовки высокой точности, снизится объем работ по дальнейшей обработке деталей, снизится время обработки заготовок, повысится производительность, а следовательно себестоимость получаемых изделий будет ниже. Т.о. экономический эффект от использования системы синхронизации траверсы пресса очевиден.

Имеющаяся система синхронизации на прессе основана на применении синхронизирующих цилиндров, расположенных в нижней части траверсы. Работа основана на принципе гидравлического слежения. При появлении перекоса поперечины пресса, возросшее давление в одном синхронизирующем цилиндре повышает давление в другом до выравнивания траверсы. Но в процессе эксплуатации такой системы выявили ее малую надежность и точность. В современных условиях требования к точности получаемых заготовок возросли, поэтому появилась необходимость в разработке новой системы синхронизации положения траверсы.




Рисунок 1.1 – Схема системы ограничения перекоса подвижной поперечины пресса 750 МН


Для разработки системы синхронизации положения траверсы приведем необходимые технические характеристики гидравлического пресса.

Пресс имеет двенадцать рабочих цилиндров с диаметром поршня 1520 мм.

Номинальное усилие – 750 МН, достигается за счет давления всех 12 цилиндров и собственного веса траверсы 5000т (50 МН).

За счет различной подачи рабочей жидкости в группы цилиндров возможен набор усилия от 50 до 750 МН.

Пресс имеет привод от двухсекционной насосно-аккумуляторной станции (давления 20 и 32 МПа).

Ход траверсы – 2000 мм.

Диапазон скоростей траверсы при рабочем ходе: 0,2 – 30 мм/с.

Обратный ход поперечины осуществляется специальными возвратными цилиндрами.


Система синхронизации действует по принципу изменения усилия в рабочих цилиндрах при перекосе траверсы посредством регулирования количества поступающей в них жидкости. Данное регулирование можно осуществлять различными способами. Разработка новой системы синхронизации предполагает отказаться от синхронизирующих цилиндров, а использовать в качестве последних четыре крайних рабочих. Эта возможность обусловлена тем, что в крайних рабочих цилиндрах при любой ступени усилия пресса рабочее давление 32 МПа. При этом в момент появления перекоса необходимо уменьшить подачу жидкости в крайнем гидроцилиндре и возобновит ее при исчезновении перекоса.

Достоинства такого поддержания траверсы в бесперекосном горизонтальном положении во время рабочего хода при эксцентричном нагружении пресса в том, что освобождается рабочее пространство в нижней части траверсы, возможно более точное поддержание необходимого давления штамповки.

Регулировать расход в рабочих (синхронизирующих) цилиндрах можно с помощью напорного клапана, который включает в свой состав гидроцилиндр, перемещение поршня которого регулирует расход жидкости через клапан в рабочий гидроцилиндр. Т.о. стоит задача проектирования системы управления перемещением поршня цилиндра напорного клапана в зависимости от величины перекоса поперечины пресса.

Структурная схема системы синхронизации траверсы представлена на рисунке 1.2.




Рисунок 1.2 – Структурная схема синхронизации траверсы пресса


Регулируемым объектом является траверса пресса. В качестве чувствительного элемента используем датчик положения. В качестве усилительно- преобразующего устройства применим дросселирующий распределитель. Регулирующий орган – гидроцилиндр напорного клапана.

Важный элемент алгоритма работы системы синхронизации – определение зависимости величины расхода жидкости в рабочем цилиндре от положения траверсы. Для этого необходимо ввести в схему контроллер, который будет обрабатывать информацию с датчиков положения и выдавать сигналы на установку положения золотников в соответствующих дросселирующих распределителях. В результате управляемые клапаны будут открываться и закрываться на необходимую величину, подавая в синхронизирующие гидроцилиндры определенную подачу рабочей жидкости.

Расход жидкости в каждом синхронизирующем цилиндре управляется отдельно, по два цилиндра на одну насосную установку. Это решение обусловлено конструктивными особенностями гидравлического пресса. Насосные установки располагаются в верхней части пресса, непосредственно вблизи напорных клапанов, регулирующих расход в синхронизирующих цилиндрах. Таким образом предотвращаются потери давления по длине трубопровода и в местных гидравлических сопротивлениях. Два крайних цилиндра слева управляются от одной насосной установки, два крайних цилиндра справа – от другой. При этом повышается надежность эксплуатации системы синхронизации, т.к. при аварийных ситуациях, таких как отказ в работе приводного электродвигателя, имеется возможность с помощью второй насосной установки вернуть гидроцилиндры в исходное положение. Т.о. отказ в работе системы ограничения перекоса не окажет существенного влияния на функционирования всей системы.

Для повышения надежности работы системы синхронизации необходимо предусмотреть возможные аварийные ситуации. В основном это повышение давления при выходе из строя гидроаппаратуры. При этом необходимо сигнализировать о повышении давления в соответствующих точках схемы и при необходимости отключить приводной электродвигатель для предотвращения аварийных ситуаций.

Первоочередной задачей при разработке системы синхронизации положения траверсы пресса является расчет управляемого впускного клапана, т.к. данный гидроаппарат не является типовым и не имеет справочных данных. После расчета впускного клапана необходимо для него спроектировать систему управления, рассчитать и выбрать гидроаппаратуру. Для контроля положения траверсы выбрать датчики положения и спроектировать схему сопряжения этих датчиков с выбранным микроконтроллером. В алгоритме работы необходимо учесть сигналы с датчиков аварийных ситуаций.

Построение динамической модели системы синхронизации позволит получить ее переходной процесс и оценить объект управления на устойчивость и быстродействие.

Функциональная схема системы синхронизации приведена на рисунке 1.3. Схема разработана в пакете AUTOCAD2000.


Рисунок 1.3 – Функциональная схема системы синхронизации положения траверсы пресса


2 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ СИСТЕМЫ СИНХРОНИЗАЦИИ


2.1 РАСЧЕТ ВПУСКНОГО УПРАВЛЯЕМОГО КЛАПАНА

Принципиальная схема клапана представлена на рисунке 2.1.

Рисунок 2.1 – Впускной управляемый клапан гидравлического пресса

1-5 – клапан; 6 – втулка; 7 – отверстия; 8 – уплотнения; 9 – крышка; 10 – пружина; 11 – указатель.


Проходное сечение клапана:

где Fпл – площадь поршня цилиндра, обслуживаемого данным клапаном;

пл – скорость поршня;

к – скорость движения жидкости через клапан.

При давлениях жидкости р=20-32Мпа к для клапанов выбирают до 20-30 м/c.

Тогда диаметр условного прохода и диаметр клапана:

Исходя из полученного диаметра основного клапана принимаем диаметр разгрузочного клапана d1=22м, а диаметр штока клапана соответственно d2=12 мм.

Для клапана усилие для подъема штока определяется по формуле:

где d1 – диаметр разгрузочного клапана;

d2 – диаметр штока клапана;

Т – сила трения в манжетах;

П – усилие пружины.

Пренебрегая силами трения и усилием пружины найдем необходимое усилие:

Обычная величина подъема разгрузочного клапана 4мм.


2.2 ВЫБОР ИСПОЛНИТЕЛЬНОГО ГИДРОЦИЛИНДРА


Для регулирования потоком жидкости в синхронизирующих цилиндрах гидравлического пресса применен напорный клапан, для его подъема используем гидроцилиндр исходя из следующих условий:

где и - соответственно паспортное и заданное значения толкающего номинального усилия на штоке;

и - соответственно паспортное и заданное значения максимального хода штока гидроцилиндра;

и -соответственно паспортное и заданное максимальные значения скорости движения штока.

Выбираем гидроцилиндр с односторонним расположением штока ЦРГ25Х12, имеющий техническую характеристику:

D=25 мм; d=10 мм; =6 мм; =7400 Н; =1,5 ; =0,95; m=1,88 кг при номинальном давлении .

=7400 Н>=2512Н;

=1,5 >=0,1 ;

=6 мм>=4 мм.

Для выбранного типоразмера гидроцилиндра определяем расчётные значения необходимого перепада давления и объёмного расхода жидкости на входе в гидроцилиндр и - на выходе.

Эффективные площади поршня:

;

.

Необходимый перепад давления:

.

Т.к. закрытие и открытие клапана должно проходить в минимальное короткое время, то учитывая минимальное время срабатывания дросселирующего распределителя 0,04с необходимая заданная скорость

з=4/0,04=0,1м/с.

Расход жидкости:

;

.

где - необходимый перепад давления, ;

- давление в нагнетательной полости гидроцилиндра, ;

- давление в сливной полости гидроцилиндра, (при выборе гидроцилиндра предполагается, что );

- диаметр поршня гидроцилиндра, м;

- диаметр штока гидроцилиндра, м;

- механический КПД гидроцилиндра;

и - соответственно объёмные расходы жидкости на входе (в нагнетательном трубопроводе) и на выходе (в сливном трубопроводе) гидроцилиндра,.


2.3 ГИДРАВЛИЧЕСКИЙ РАСЧЁТ ТРУБОПРОВОДОВ


Гидравлический расчёт трубопроводов заключается в выборе оптимального внутреннего диаметра трубы и в определении потерь давления по длине трубопровода.

Расчётное значение внутреннего диаметра трубы

где Q- расчётный объёмный расход жидкости в трубопроводе,

[]- допускаемая скорость движения жидкости,

- диаметр трубы, м.

Допускаемая скорость движения жидкости в нагнетательном трубопроводе гидропривода выбирается по нормативным данным, в зависимости от расчётного перепада давления р на исполнительном органе привода ([]=3м/c).

.

Из справочной литературы [1] выбираем внутренний диаметр бесшовной холоднодеформируемой трубы так, чтобы действительный внутренний диаметр трубы был равен расчётному значению или больше него, т.е.

Принимаем бесшовные холоднодеформируемые трубы на нагнетательном и сливном трубопроводе:

труба имеющая наружный диаметр 16 мм, толщину стенки 2 мм и внутренний диаметр мм.

Определяем действительную скорость движения жидкости в нагнетательном и сливном трубопроводах:

где Q- объёмный расход жидкости в трубопроводе,

Потеря давления при движении жидкости по нагнетательному трубопроводу (участок АБ) и сливному трубопроводу (участок ВГ) определяется:

,

где - потеря давления, - коэффициент сопротивления;

- плотность рабочей жидкости, ; - длина участка трубопровода, - внутренний диаметр выбранной трубы, - действительная скорость движения жидкости по участку трубопровода,

Коэффициент сопротивления

;

,

где - число Рейнольдса.

Число (критерий) Рейнольдса

;

где - кинематический коэффициент вязкости рабочей жидкости (масло И-20А), .


2.4 ВЫБОР ГИДРОАППАРАТУРЫ И ОПРЕДЕЛЕНИЕ ПОТЕРЬ ДАВЛЕНИЯ


Гидравлическая аппаратура выбирается из справочника при соблюдении следующих условий:

где и - соответственно номинальное паспортное давление гидроаппарата и расчетный перепад давления на исполнительном органе привода;

и - соответственно номинальный паспортный объемный расход гидроаппарата и расчетный максимальный расход на входе в исполнительный орган привода.

Для выбранного типоразмера гидроаппарата определяется действительная потеря давления при прохождении расчетного расхода через гидроаппарат:

где - паспортное значение потери давления при проходе через гидроаппарат номинального паспортного расхода;

- действительное значение расхода, проходящего через гидроаппарат.

  1. Предохранительный клапан ПКПД10-20, имеющий техническую характеристику:

номинальное давление - 2010­6 >5,4106;

номинальный расход – 6,710-4>0,9810-4;

потеря давления – 0,25106;

объемный расход утечек – 210-6;

диаметр условного прохода – 0,01м;

масса – 4,5кг.

Потеря давления жидкости при прохождении каналов предохранительного клапана:

.

2. Дросселирующий распределитель с пропориональным электрическим управлением РП6, имеющий техническую характеристику:

номинальное давление – ;

номинальный расход – >0,4910-4;

потеря давления – 1,2 106;

объемный расход утечек – 2,510-6;

минимальное время срабатывания – 0,04с;

диаметр условного прохода – 610-3м;

диаметр золотника – 910-3м;

максимальное смещение золотника – 110-3м;

диаметр сопла – 0,410-3м;

максимальное смещение заслонки – 0,410-3м;

масса – 0,5кг.

Потеря давления жидкости при прохождении каналов гидрораспределителя:

.

  1. Двухсторонний гидравлический замок ГМ3 6/3, имеющий техническую характеристику:

номинальное давление – ;

номинальный расход – >0,4910-4;

потеря давления – 0,3106;

объемный расход утечек – 0,610-6;

диаметр условного прохода – 0,006м;

масса – 0,8кг.

Потеря давления жидкости при прохождении каналов гидравлического замка:

.

4. Фильтры, имеющие технические характеристики:

приемный фильтр ФВСМ32:

номинальный расход – 6,710-4>0,9810-4;

потеря давления – 0,007106;

диаметр условного прохода – 0,032м;

точность фильтрации – 80мкм;

масса – 4кг.

напорный фильтр 1ФГМ32:

номинальное давление - 32106>9,12106;

номинальный расход – 5,310-4>0,9810-4;

потеря давления – 0,08106;

диаметр условного прохода – 0,022м;

точность фильтрации – 10мкм;

масса – 5кг.

сливной фильтр ФС25:

номинальное давление – 0,63106;

номинальный расход – 4,210-4;

потеря давления – 0,1106;

диаметр условного прохода – 0,02м;

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: