Xreferat.com » Рефераты по цифровым устройствам » Измерение случайных процессов

Измерение случайных процессов

0 при x (t) X, x (t) > X+X


В качестве примера рассмотрим средство измерений для определения интегральной функции распределения вероятности уровня электрического сигнала. Схема средства измерений, реа­лизующего алгоритм

t

F* (X)=1/T [xk(t) ,X]dt ,

t-T


показана на рис. 5, где ПУ — пороговое устройство, формиру­ющее сигнал X k (t}—X; ФУ—формирующее устройство; И—интегратор, на выходе которого получается сигнал F* (X) при установленных значениях Х и Т; УС — устройство сопряжения;

ЦИП — цифровой прибор; РП — регистрирующий прибор.

Средняя квадратическая погрешность из-за конечности объема выборки определяется для F {X) с помощью соотношения


2 1/2

 =[2(F - F ) k/T]

F


при усреднении по времени и с помощью соотношения

2 1/2

 =[2(F - F )/N]

F

при усреднении по совокупно­сти. Для (X) соответствующие соотношения имеют вид:

2 1/2

 =[2(w - w X) k/T]

w


2 1/2

и =[(w - w X)/N]

w


В приведенных соотношениях F и w — истинные значения измеряемых функ­ций при данном X.


4. ИЗМЕРЕНИЯ КОРРЕЛЯЦИОННОЙ ФУНКЦИИ

Для случайного процесса с нулевым математическим ожида­нием корреляционная функция равна:

Rx (s,) = lim Sd[xi (t) xi-s (t-)],

d

где и s — соответственно сдвиг во времени и в пространстве реализации перемножаемых мгновенных значений.

В практических задачах большую роль играют стационарные случайные процессы, т. е. процессы с постоянными вероятностны­ми характеристиками, не зависящими от текущего времени. Сре­ди случайных процессов можно выделить эргодические процессы, для которых

t

Rx () = lim 1/T x (t) x (t-)dt,

T 0


Большое значение корреляционного анализа в различных областях науки и техники привело к созданию множества измери­тельных приборов для измерений корреляционных функций — коррелометров.

Типовая структура коррелометра, в котором используется усреднение по времени, представлена на рис. 6. При этом реализуется следующий алгоритм:

t

R*x () = 1/T xk (t) xk (t-)dt,

t-T


Как видно, после нормирующего преобразователя НП сигнал поступает в устройство временной задержки УЗ и на перемножа­ющее устройство ПУ, осуществляющее перемножение мгновен­ных значений, сдвинутых по времени на интервал т. Далее с по­мощью интегратора И выполняется усреднение, после которого результирующий сигнал через УС подается на цифровой прибор ЦИП или регистрирующий прибор РП.

Средние квадратические погрешности, обусловленные ко­нечностью объема выборочных данных о мгновенных значениях реализации процесса Х (t), оцениваются с помощью соотноше­ний:


1/2

 ={2D[xk (t) xk (t-)] k/T}

R


при усреднении по времени Т и

1/2

 ={D[xk (t) xk (t-)]/N}

R


при усреднении по совокупности.


5. АНАЛИЗ СПЕКТРА МОЩНОСТИ

Спектр мощности характеризует ее частотное распределение, и он может быть определен в соответствии со следующими форму­лами:

2

Sx(w) = lim 1/T xiT (w)

T

Где

t -jwt’

XiT (w) = xi (t’) e dt’

t-T

На рис. 7 изображена схема анализатора спектра мощно­сти случайного процесса Х (t).

С выхода нормирующего преобразователя НП i-я реализация случайного процесса xi (t) поступает на блок Ф, выполняющий преобразование Фурье, после чего узлом Кв производится возве­дение в квадрат и нормирование с учетом интервала усреднения Т. С помощью устройства сопряжения УС сформированный сиг­нал поступает на ЦИП и регистратор РП.

В настоящее время отечественной промышленностью серийно выпускаются анализаторы случайных процессов. К ним относят­ся многофункциональный статистический преобразователь Ф790, корреллометр Ф7016, комплекс измерителей характеристик случайных сигналов Х6-4/а, многофункциональные измерители ве­роятностных характеристик Ф36 и Ф37, анализаторы спектра Ф4326, Ф4327, Ф7058 и др. С помощью этих приборов и устройств можно измерять математические ожидания и дисперсии, а также значения функций распределения вероятности, корреляционных и спектральных функций с последующим восстановлением вида самих функций. Перечисленные анализаторы рассчитаны в ос­новном на унифицированный входной сигнал и позволяют изме­рить от 256 до 4096 ординат анализируемой функции. Погреш­ность измерения не превышает ±5 %.

Кроме того, для определения вероятностных характеристик случайных сигналов могут использоваться электроизмеритель­ные приборы, предназначенные для измерения среднего и дей­ствующего значений сигнала. Для определения среднего значе­ния применяют магнитоэлектрические приборы и цифровые ин­тегрирующие приборы. Для определения среднего квадратического отклонения используют приборы, показания которых определяются действующим значением сигнала (термоэлектри­ческие, электростатические и др.).

Корреляционные устройства получили применение в различ­ных областях науки и техники для измерения различных величин. В качестве примера можно указать корреляционное устройство для измерения скорости прокатки. Эти устройства измеряют кор­реляционную функцию, зависящую от т, которая, в свою очередь, зависит от скорости прокатки.









Список литературы :


1.Метрология и электроизмерительные приборы. Душин М .Е.М.: Энергоатомиздат,1986.


2.Метрология, стандартизация и измерения в технике связи. Под ред. Б.П. Хромого

М.: Радио и связь, 1986.


3.Основы метрологии и стандартизации. Голубева В. П. М .: Вектор, 1996.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: