Xreferat.com » Рефераты по экономико-математическому моделированию » Эконометрика (оценить тесноту связи между факторами при помощи коэффициентов корреляции рангов Спирмена и Кендела и другие задачи)

Эконометрика (оценить тесноту связи между факторами при помощи коэффициентов корреляции рангов Спирмена и Кендела и другие задачи)

Московское Представительство

Ленинградского Государственного Областного Университета им. Пушкина

Индивидуальное задание

по курсу «Эконометрика»


Выполнил: Макаров А.В.

Студент 3-его курса

Группы П-31д

Дневного отделения

Преподаватель: Мезенцев Н.С.


.


Москва 2002г.


Задача 1.

При помощи коэффициентов корреляции рангов Спирмена и Кендела

оценить тесноту связи между факторами на основании следующих данных:


Табл.1

№ Предприятия Объем реализации, млн.руб. Затраты по маркетенгу, тыс. руб. Rx Ry

di

di2

1 12 462 2 1 1 1
2 18,8 939 5 5 0 0
3 11 506 1 2 -1 1
4 29 1108 7 7 0 0
5 17,5 872 4 4 0 0
6 23,9 765 6 3 3 9
7 35,6 1368 8 8 0 0
8 15,4 1002 3 6 -3 9
Итого




20

1)находим коэффициент Спирмена:

.

Вывод: Коэффициент Спирмена равен 0,77.

По шкале Чеддока связь между факторами сильная.


2)находим коэффициент Кендела:

x

y

Rx

Ry

+

-

12,0

462

2

1

6


18,8

939

5

5

3

3

11,0

506

1

2



29,0

1108

7

7

1

3

17,5

872

4

4

2

1

23,9

756

6

3

1


35,6

1368

8

8


1

15,4

1002

3

6







P=13

Q= -8





S=P+Q=13-8=5


Вывод: Коэффициент Кендела равен 0,19.

По шкале Чеддока связь между факторами слабая.


Задача 2.

Имеются исходные данные о предприятиях отрасли. Используя коэффициент конкордации, оценить тесноту связи между приведёнными в таблице факторами.

Табл.1


=302

Вывод: Коэф. Конкордации равен 0,674. По шкале Чеддока связь заметная.


Задача 4.

Построить модель связи между указанными факторами, проверить её адекватность, осуществить точечный и интервальный прогноз методом экстраполяции.


4.1. Исходные данные отложить на координатной плоскости и сделать предварительное заключение о наличии связи.


таб.1 диагр.1

x

y

2,1

29,5

2,9

34,2

3,3

30,6

3,8

35,2

4,2

40,7

3,9

44,5

5,0

47,2

4,9

55,2

6,3

51,8

5,8

56,7


Вывод: Из диаграммы 1 видно, что связь между факторами x и y

прямая сильная линейная связь.


4.2.Рассчитайте линейный коэффициент корреляции. Используя t-критерий Стьюдента, проверьте значимость коэффициента корреляции. Сделайте вывод о тесноте связи между факторами х и у, используя шкалу Чеддока.

таб.2

xy

1

2,1

29,5

4,41

870,25

61,95

27,91

1,59

0,054

2

2,9

34,2

8,41

1169,64

99,18

33,46

0,74

0,022

3

3,3

30,6

10,89

936,36

100,98

36,23

-5,63

0,184

4

3,8

35,2

14,44

1239,04

133,76

39,69

-4,49

0,128

5

4,2

40,7

17,64

1656,49

170,94

42,47

-1,77

0,043

6

3,9

44,5

15,21

1980,25

173,55

40,39

4,11

0,092

7

5,0

47,2

25

2227,84

236

48,01

-0,81

0,017

8

4,9

55,2

24,01

3047,04

270,48

47,32

7,88

0,143

9

6,3

51,8

39,69

2683,24

326,34

57,02

-5,22

0,101

10

5,8

56,7

33,64

3214,89

328,86

53,55

3,15

0,056

ИТОГО:

42,2

426

193,34

19025,04

1902,04

426


0,840

Среднее зн.

4,22

42,56

19,334

1902,504

190,204





4.2.1.Проверим тесноту связи между факторами, рассчитаем ЛКК:


;


Вывод: по шкале Чеддока связь сильная.


4.2.2.Проверим статистическую значимость ЛКК по критерию Стьюдента:

1)Критерий Стьюдента: tвыб<=tкр

2)Но: r=0 tкр=2,31


tвыб=rвыб*

Вывод: таким образом поскольку tвыб=5,84

90% нулевая гипотеза отвергается, это указывает на наличие сильной линейной связи.


4.3.Полагая, что связь между факторами х и у может быть описана линейной функцией, используя процедуру метода наименьших квадратов, запишите систему нормальных уравнений относительно коэффициентов линейного уравнения регрессии. Любым способом рассчитайте эти коэффициенты.



Последовательно подставляя в уравнение регрессии из графы (2) табл.2, рассчитаем значения и заполним графу (7) табл.2


4.4.Для полученной модели связи между факторами Х и У рассчитайте среднюю ошибку аппроксимации. Сделайте предварительное заключение приемлемости полученной модели.


Для расчета заполним 8-ую и 9-ую графу табл.2

<Екр=12%

Вывод: модель следует признать удовлетворительной.


4.5. Проверьте значимость коэффициента уравнения регрессии a1 на основе t-критерия Стьюдента.

Решение: Таб.3






 



1

2,1

29,5

27,91

2,5281

214,623

170,5636

2

2,9

34,2

33,46

0,5476

82,81

69,8896

3

3,3

30,6

36,23

31,6969

40,069

143,0416

4

3,8

35,2

39,69

20,1601

8,237

54,1696

5

4,2

40,7

42,47

3,1329

0,008

3,4596

6

3,9

44,5

40,39

16,8921

4,709

3,7636

7

5

47,2

48,01

0,6561

29,703

21,5296

8

4,9

55,2

47,32

62,0944

22,658

159,7696

9

6,3

51,8

57,02

27,2484

209,092

85,3776

10

5,8

56,7

53,55

9,9225

120,78

199,9396

ИТОГО:

42,2

425,6

426,1

174,8791

732,687

911,504

Среднее

4,22

42,56






Статистическая проверка:




Вывод: С доверительной вероятностью 90% коэффициент a1- статистически значим, т.е. нулевая гипотеза отвергается.


4.6. Проверьте адекватность модели (уравнения регрессии) в целом на основе F-критерия Фишера-Снедекора.

Решение:

Процедура статистической проверки:

:модель не адекватна

Вывод: т.к. Fвыб.>Fкр., то с доверительной вероятностью 95% нулевая гипотеза отвергается (т.е. принимается альтернативная). Изучаемая модель адекватна и может быть использована для прогнозирования и принятия управленческих решений.


4.7. Рассчитайте эмпирический коэффициент детерминации.

Решение:


(таб. 3)

-показывает долю вариации.

Вывод: т.е. 80% вариации объясняется фактором включенным в модель, а 20% не включенными в модель факторами.


4.8. Рассчитайте корреляционное отношение. Сравните полученное значение с величиной линейного коэффициента корреляции.

Решение:


Эмпирическое корреляционное отношение указывает на тесноту связи между двумя факторами для любой связи, если связь линейная, то , т.е. коэффициент ЛКК совпадает с коэффициентом детерминации.


4.9. Выполните точечный прогноз для .

Решение:


4.10-4.12 Рассчитайте доверительные интервалы для уравнения регрессии и для результирующего признака при доверительной вероятности =90%. Изобразите в одной системе координат:

а) исходные данные,

б) линию регрессии,

в) точечный прогноз,

г) 90% доверительные интервалы.

Сформулируйте общий вывод относительно полученной модели.

Решение:

-математическое ожидание среднего.

Для выполнения интервального прогноза рассматриваем две области.

  1. для y из области изменения фактора x доверительные границы для линейного уравнения регрессии рассчитывается по формуле:

  1. для прогнозного значения доверительный интервал для рассчитывается по формуле:

Исходные данные:

  1. n=10

  2. t=2,31(таб.)

4)

5): 27,91 42,56 57,02 66,72

6)19,334-4,222)=1,53.


Таб.4





 

 















1

2,1

-2,12

4,49

3,03

1,74

2,31

4,68

18,81

27,91

9,10

46,72

2

4,22

0,00

0,00

0,1

0,32

2,31

4,68

3,46

42,56

39,10

46,02

3

6,3

2,08

4,33

2,93

1,71

2,31

4,68

18,49

57,02

38,53

75,51

4

7,7

3,48

12,11

9,02

3

2,31

4,68

32,43

66,72

34,29

99,15


Вывод: поскольку 90% точек наблюдения попало в 90% доверительный интервал данная модель и ее доверительные границы могут использоваться для прогнозирования с 90% доверительной вероятностью.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: