Исследование экономико-математических моделей
Задание 1
Значения цены, спроса и предложения на определенный вид товара приведены в таблице:
Цена Х |
Спрос У1 |
Предложение У2 |
8,6 | 2220 | 1101,93 |
9,6 | 1825 | 1102,93 |
10,6 | 1869 | 1252,93 |
11,6 | 1625 | 1286,93 |
12,6 | 1375 | 1328,93 |
13,6 | 1377 | 1411,93 |
14,6 | 1145 | 1573,93 |
15,6 | 1045 | 1620,93 |
16,6 | 1005 | 1748,93 |
17,6 | 1025 | 1838,93 |
18,6 | 795 | 1906,93 |
На основе статистических данных оценить параметры регрессии спроса и предложения на цену, если допустит, что стохастическая зависимость между спросом и ценой можно описать квадратичной функцией, а предложением и ценой – линейной функцией.
Оценить адекватность эконометрических моделей статистическим данным с надежностью Р=0.95 и найти:
– точку равновесной цены: 1) графически, 2) аналитически, развязав уравнение У1=У2, 3) с помощью «паутинообразной» модели с точностью 0,01, предварительно проверив сходимость этого итерационного метода; 4) с помощью процедуры «Подбор параметра». Сравнить результаты, полученные всеми способами;
– значение коэффициента эластичности спроса и предложения в точке равновесия.
Построить доверительные зоны регрессий спроса и предложения.
Сделать выводы.
Супермаркет | Х | Y | X? | Y? | XY |
20 | 340 | 3 | 115600 | 9 | 1020 |
? | 5084 | 38 | 1349608 | 77,3 | 9899,9 |
?/n | 254,2 | 1,9 | 67460,4 | 3,865 | 495 |
Начнем с того, что найдем уравнение регрессии. Для этого найдем:
Значение дисперсии.
Для этого нам понадобится средняя арифметическая простая, которая находится по формуле: Хср=?Х/n Хср= 149,6/11=13,6?2ср=??2/n?ср= 16175,27/11=1470,5
Теперь найдем значение дисперсии по формуле Dх?=?Х?/n – (х)? Dy?=?y?/n – (y)
Dх?= 194,96–13,6?=10 D?y=2236173,39–1470,48?=73865,5
S=vD Sx=v10=3,2 Sy=v73865,5=271,8
Теперь найдем коэффициент корреляции (вон показывает степень тесноты связи Х и?). Численное значение коэффициента корреляции количественно измеряет тесноту корреляционной связи. Чем больше коэффициент корреляции тем плотнее точки корреляционного поля прилегают к линии регрессии. Знак коэффициента корреляции отражает характер влияния Х и?.
r=?X?/n-?ср*Xср/Sx*Sy r=0,99
В нашем случае очень сильная теснота корреляционной связи между ценой и предложением. Это значит, что 99% изменения предложения объясняется изменением цены.
Теперь вычислим коэффициент регрессии.
Вон определяется по формуле: b1= r*(Sy/Sx) b1=0,99* (271,8/3,2)=85,182
B0=?ср-b*Xср b0=1470,5–85,182*13,6=312,01
Уравнение регрессии будет иметь следующий вид:
У=b1х+b0=85,182x + 312,01
Строим точечную диаграмму по выходным данным Y( ). С помощью функции «Добавит линию тренда» строим линейный тип линии тренда (рис. 3.1). При этом включаем опцию вывода уравнения линии тренда и коэффициента детерминации R2.
Рис. 1.1.
Получили линейное уравнение регрессии
У=b1х+b0=85,182x + 312,01.
Уравнение линейной регрессии появилось на графике таким способом:
- После построения в MS Excel обычной точечной диаграммы за диапазонами Х и В с помощью мастера диаграмм (вкладка Стандартные / Точечная), выделяем ряд построенных точек правой кнопкой мыши, и в появившемся контекстном меню изберем команду (Добавит линию тренда).
- Тип линии тренда выберем Линейная, а на вкладке Параметры ставим галочке напротив полей Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации R2 (то есть коэффициент детерминации R2). Таким образом, построен точечный график функции В(Х) в виде корреляционного поля и к нему прибавлена линия линейного тренда. Дальше в работе избирал соответствующий тип линии тренда аналогично выстраиваются нелинейные тренды.
Выборочный коэффициент детерминации равняется R2 = 0,99813, а коэффициент корреляции составляет r = v0,9813 = 0,9911.
С помощью функции СРЗНАЧ определим средние значения величин: Xcp = 13,6, Y2cp = 1470,5. Тогда определим средний коэффициент эластичности для этой модели:
, A =
85,182*13,6/1470,5 = 0,78
то есть при росте показателя на 1% показатель Y растет на 0,78%.
Вычислим теоретические значения зависимой переменной. Средняя погрешность аппроксимации MAPE, которая характеризует точность аппроксимации выборки построенным уравнениям регрессии находится по формуле
MAPE =.
Объясним, как рассчитывается средняя погрешность аппроксимации MAPE при построении уравнения линейной регрессии (таблица 3.1).
Таблица 3.1
B | C | D | E | F | |
1 | Y2 | X | Y^ | 100*|Y-Y^|/Y | |
2 | 1101,93 | 8,6 | 1044,570 | 5,21 | |
3 | 1102,93 | 9,6 | 1129,752 | 2,43 | |
4 | 1252,93 | 10,6 | 1214,933 | 3,03 | |
5 | 1286,93 | 11,6 | 1300,115 | 1,02 | |
6 | 1328,93 | 12,6 | 1385,297 | 4,24 | |
7 | 1411,93 | 13,6 | 1470,479 | 4,15 | |
8 | 1573,93 | 14,6 | 1555,661 | 1,16 | |
9 | 1620,93 | 15,6 | 1640,842 |
Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.),
обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Похожие рефераты: |