Xreferat.com » Рефераты по экономико-математическому моделированию » Статистический анализ и прогнозирование

Статистический анализ и прогнозирование

Содержание


Введение

1. Методы исчисления ВРП

1.1. Производственный метод

1.2. Распределительный метод

1.3. Метод конечного использования

2. Методы прогнозирования

2.1. Общая характеристика методов прогнозирования

2.2. Эконометрические методы прогнозирования

3. Анализ ВРП республики Бурятии

3.1. Сравнение показателей производства ВРП Бурятии с показателями ВРП СФО и ВВП России

3.2. Динамика среднедушевого производства ВРП Бурятии, СФО и ВВП России

3.3. Счет производства

3.4. Динамика среднедушевого фактического конечного потребления домашних хозяйств РБ, СФО и России

3.5. Выявление наличия тенденций

3.6. Выбор уравнения тренда

3.7. Экспоненциальное сглаживание

3.8. Прогнозирование на основе эконометрической модели

Заключение

Список использованной литературы

Введение


Современный экономический статус субъектов Российской Федерации требует использования разнообразных инструментов оценки экономического развития, финансовой сбалансированности, условий конкуренции на отечественном и мировом рынках. С другой стороны, такие инструменты необходимы для проведения активной федеральной политики, направленной на устранение межрегиональных диспропорций, укрепление экономической и политической целостности страны.

Усиление самостоятельности регионов, развитие бюджетного федерализма увеличивают значимость региональной политики. В этих условиях разработка региональных управленческих решений требует современных подходов к их информационному обеспечению и экономическому обоснованию. С этой точки зрения, универсальной основой для комплексного анализа обобщающих характеристик рыночной экономики является система национальных счетов (СНС). Логическим продолжением СНС для регионального уровня является система региональных счетов (СРС). Центральное положение в СНС занимает валовой внутренний продукт (ВВП), а в СРС – его региональный аналог – валовой региональный продукт (ВРП). Он характеризует уровень экономического развития и результаты экономической деятельности всех хозяйствующих субъектов региона.

Без ВВП (ВРП) невозможно построение важнейших национальных (региональных) счетов.

В России СНС начала внедрятся с федерального уровня. Однако регионы также испытывают необходимость в современной статистической обобщающей модели. В нашей стране, объединяющей 89 территориально-административных образований с различными временными поясами и географическим положением, существуют значительные различия в уровнях экономического и социального развития регионов. Поэтому проблема расчета валового продукта для каждого региона стоит особенно остро.

Не только территориальные органы управления, но и государство в целом заинтересованы в информации, комплексно характеризующей экономику всех регионов, позволяющей осуществлять выработку экономической политики и оценку эффективности принятых решений на региональном уровне.

Процесс развития социально-экономических явлений во времени принято называть динамикой. Наиболее общим показателем экономического развития регионов является динамика валового продукта территории. Для отображения динамики строят временные ряды. Временные ряды позволяют охарактеризовать закономерность изменения явления во времени. Ряды динамики являются основным источником прогнозирования в экономике. Процесс прогнозирования предполагает выявление возможных альтернатив развития в перспективе для обоснованного их выбора и принятия оптимального решения.

Задача анализа и прогнозирования региональных макроэкономических показателей приобретает особое значение в связи с повышением роли ВРП в реформировании межбюджетных отношений и использовании этого показателя при распределении средств Фонда финансовой поддержки субъектов Российской Федерации.

Задачи курсовой работы: рассмотреть понятие ВРП, способы исчисления ВРП, общую характеристику методов прогнозирования, показать динамику среднедушевого производства ВРП Бурятии, СФО, ВВП России.

Целью курсовой работы является изучение, анализ и прогнозирование валового регионального продукта республики Бурятия, сравнение ВРП с другими регионами.

Объектом исследования данной курсовой работы является валовой региональный продукт (ВРП) Республики Бурятия.

1. Методы исчисления ВРП


Центральным макроэкономическим показателем является валовой внутренний продукт. Он рассматривается в качестве наиболее общего индикатора экономической активности и благосостояния страны. В экономическом анализе ВВП составляется с численностью всего населения, экономически активного и занятого населения, потребленными в производстве ресурсами, основными фондами, объемом инвестиций, фондом заработной платы, государственными расходами по различным направлениям, реальными денежными доходами и расходами населения и другими показателями.

ВРП характеризует конечный результат производственной деятельности всех резидентных производственных единиц данной территории за определенный период времени. Он может быть рассмотрен на стадии производства, на стадии образования доходов и на стадии использования доходов.

На стадии производства ВРП характеризует добавленную стоимость, созданную резидентами в текущем периоде в процессе производства товаров и услуг.

На стадии образования доходов ВРП представляет собой сумму первичных доходов, полученную резидентами в процессе производства, и подлежащую распределению между участниками процесса производства.

На стадии использования доходов ВРП отражает сумму расходов всех секторов национальной экономики на конечное потребление и накопление и чистого экспорта товаров и услуг.

Соответственно различают три метода исчисления ВРП: производственный метод, метод формирования ВРП по источникам доходов и метод конечного использования.

1.1 Производственный метод исчисления ВРП


ВРП является агрегированным показателем объема производства. Он предназначен для измерения стоимости, созданной в процессе производства за тот или иной период времени резидентами данной территории. В основе производственного метода исчисления ВРП лежат следующие показатели:

выпуск товаров и услуг,

промежуточное потребление,

валовая добавленная стоимость.

Выпуск (В) сектора, отрасли или экономики в целом представляет собой стоимость всех товаров и услуг, произведенных в текущем периоде резидентными производственными единицами, входящими в состав соответственно сектора, отрасли или национальной экономики. Поскольку выпуск институциональной единицы складывается из выпусков принадлежащих ей заведений, выпуск всех секторов национальной экономики равен выпуску всех отраслей. Выпуск принято в СНС исчислять в основных ценах.

Стоимость произведенной продукции включает стоимость товаров и услуг, использованных в процессе производства. Для того чтобы получить стоимость, вновь созданную в текущем периоде в процессе производства, необходимо из выпуска товаров и услуг вычесть промежуточное потребление.

Под промежуточным потреблением (ПП) понимается стоимость товаров и услуг, которые трансформируются или полностью потребляются в данном периоде в процессе производства других товаров и услуг. Оно включает следующие составные элементы:

материальные затраты (сырье, материалы, топливо, энергия, полуфабрикаты, материальные услуги, расходы собственников жилья на его текущий ремонт; покупки домашними хозяйствами инструментов, строительных материалов, семян, кормов для собственной хозяйственной деятельности; покупки продуктов питания и медикаментов больницами и др.);

оплата нематериальных услуг (оплата научно-исследовательских и экспериментальных работ, оплата финансовых услуг, затраты на обучение и повышение квалификации кадров, плата за юридические услуги, аудит, расходы на рекламу, арендные платежи за использование производственных активов ( зданий, сооружений, машин, оборудования и др.);

расходы на командировки (в части оплаты проезда и услуг гостиниц);

другие элементы промежуточного потребления, включающие как материальные затраты, так и оплату нематериальных услуг (представительские расходы, расходы по гарантийному ремонту и обслуживанию, затраты на содержание научно-исследовательских лабораторий и бюро, расходы по набору кадров, стоимость доставки работников на работу и с работы, оплачиваемой производителем).

Для расчета промежуточного потребления используются данные, содержащиеся в формах статистического наблюдения о затратах на производство и реализацию продукции (работ, услуг), данные отчета об исполнении сметы доходов и расходов бюджетных организаций, выборочные обследования домашних хозяйств (для получения данных о сельскохозяйственном производстве в хозяйствах населения и другой предпринимательской деятельности) и другие источники информации.

Промежуточное потребление оценивается в рыночных ценах (ценах покупателей) на момент поступления соответствующих товаров и услуг в производство.

Разность между выпуском товаров и услуг и промежуточным потреблением называется валовой добавленной стоимостью (ВДС):


ВДС = В – ПП.

Термин «валовая» означает, что при исчислении показателя добавленной стоимости из выпуска не вычитается потребление основного капитала, которое, так же как и стоимость других потребленных в производстве товаров и услуг, является результатом производственной деятельности предшествующих периодов. Потребление основного капитала (А) определяется в СНС как уменьшение стоимости основного капитала в процессе производства товаров и услуг в результате физического и морального износа или обычных повреждений. Оно должно рассчитываться исходя из фактических сроков службы и восстановительной стоимости элементов основного капитала, например на основе метода непрерывной инвентаризации. Если из валовой добавленной стоимости исключить потребление основного капитала, то получим показатель, называемый чистой добавленной стоимостью (ЧДС). Он более точно отражает вновь созданную в текущем периоде стоимость, добавленную к стоимости потребленных в процессе производства товаров и услуг:


ЧДС = ВДС – А.


Поскольку выпуск измеряется в основных ценах, валовая добавленная стоимость и чистая добавленная стоимость также оцениваются в основных ценах, включающих субсидии, но исключающих налоги на продукты. Из этого вытекает, что одним из компонентов добавленной стоимости являются другие налоги на производство.

Сумма валовой добавленной стоимости всех секторов национальной экономики равна сумме добавленной стоимости всех отраслей. Для определения ВРП в рыночных ценах сумма валовой добавленной стоимости отраслей или секторов экономики уменьшается на величину косвенно измеряемых услуг финансового посредничества1 и увеличивается на величину чистых налогов на продукты (ЧНП):


ВВП = ∑ ВДС + ЧНП,


где ∑ ВДС – суммарная величина валовой добавленной стоимости за вычетом косвенно измеряемых услуг финансового посредничества;

Исключая из валового внутреннего продукта потребление основного капитала, получают чистый внутренний продукт (ЧВП)2:


ЧВП = ВВП – А.


1.2 Распределительный метод исчисления ВРП


На стадии формирования доходов ВРП может быть исчислен как сумма первичных доходов, подлежащих распределению между непосредственными участниками процесса производства. Эти доходы являются компонентами добавленной стоимости текущего периода, созданной в процессе производства. К ним относятся следующие доходы от производства:

оплата труда наемных работников (резидентов и нерезидентов), определяемая как вознаграждение в денежной и в натуральной форме, выплачиваемое резидентами наемным работникам за работу, выполненную в течение текущего периода. При этом учитываются все начисленные работникам суммы ( до исключения налогов на доходы и других вычетов из заработной платы), а также отчисления страховых взносов в фонды социального страхования и обеспечения;

чистые налоги на производство и импорт, являющиеся доходами государства. В этом элементе учитываются не только налоги и субсидии на продукты, но и другие налоги на производство, которыми облагаются производственные единицы как участники процесса производства (исключая налоги на прибыль и другие доходы);

валовая прибыль и валовые смешанные доходы, полученные резидентами в результате их участия в производстве до расчетов с другими хозяйственными единицами за использование заемных финансовых или нефинансовых непроизведенных активов в процессе производства (т.е. до выплаты дивидендов по акциям, процентов по вкладам, ренты за пользование землей и т.п.). Выплаты за использование заемных активов называются в СНС доходами от собственности. Если из этого элемента исключить потребление основного капитала, то получим чистую прибыль и чистые смешанные доходы.

Данный метод расчета ВРП используется для анализа его стоимостной структуры.

В процессе распределения первичных доходов принимают участие не только резиденты региона , но и нерезиденты (остальной мир). Часть первичных доходов должна быть передана нерезидентам в виде оплаты труда и в виде доходов от собственности (дивидендов, процентов и др.). Вместе с тем резиденты могут получить первичные доходы от прямого или косвенного участия в производстве ВРП других регионов также в виде оплаты труда и доходов от собственности. Если из ВРП исключить первичные доходы, переданные остальному миру, и прибавить первичные доходы, полученные от остального мира, то получим валовой национальный доход региона (ВНД) в рыночных ценах.

Национальный доход (валовой или чистый) характеризует сумму всех первичных доходов, полученных резидентами страны в результате прямого или косвенного участия в производственной деятельности как в пределах национальной экономики, так и за ее пределами .

1.3 Исчисление ВРП методом конечного использования


ВРП представляет собой сумму расходов резидентов на конечное потребление, валовое накопление и чистого экспорта.

Под конечным потреблением понимается использование товаров и услуг для удовлетворения индивидуальных потребностей населения и коллективных потребностей общества в целом. Доходы одних институциональных единиц могут использоваться для финансирования расходов на потребительские товары и услуги, потребляемые другими институциональными единицами.

Расходы на конечное потребление имеют институциональные единицы трех секторов экономики: домашние хозяйства (Статистический анализ и прогнозирование), государственные учреждения (Статистический анализ и прогнозирование) и некоммерческие организации (Статистический анализ и прогнозирование), обслуживающие домашние хозяйства.

В составе расходов на конечное потребление государственных учреждений (Статистический анализ и прогнозирование) могут быть выделены две группы:

расходы на индивидуальные товары и услуги, предоставляемые домашним хозяйствам (Статистический анализ и прогнозирование). Они включают стоимость нерыночных услуг, оказываемых бюджетными учреждениями в области здравоохранения, образования, социального обеспечения, культуры, искусства, физкультуры и спорта, а также стоимость товаров и услуг, приобретенных ими для передачи домашним хозяйствам в качестве социальных пособий в натуральной форме (бесплатные лекарства, учебники, средства передвижения для инвалидов и услуги по их ремонту и др.);

расходы на коллективные услуги (Статистический анализ и прогнозирование) охватывают стоимость нерыночных услуг бюджетных организаций в области управления, обороны безопасности, науки, защиты окружающей среды и т.п.

Под фактическим конечным потреблением понимается стоимость фактически потребленных товаров и услуг независимо от источника финансирования. Оно включает:

стоимость всех индивидуальных товаров и услуг, приобретенных домашними хозяйствами-резидентами (фактическое конечное потребление домашних хозяйств) Статистический анализ и прогнозирование;

стоимость коллективных услуг, предоставленных государственными учреждениями обществу в целом (фактическое конечное потребление государственных учреждений) Статистический анализ и прогнозирование.

Для отдельных секторов расходы на конечное потребление не равны фактическому конечному потреблению. Для экономики в целом конечное потребление может быть исчислено двумя методами:

как сумма расходов на конечное потребление всех секторов:


Статистический анализ и прогнозирование;


как сумма фактического конечного потребления домашних хозяйств и государственных учреждений:


Статистический анализ и прогнозирование.


Помимо расходов на конечное потребление основными компонентами конечного использования ВРП являются валовое накопление и чистый экспорт товаров и услуг. Валовое накопление охватывает следующие три элемента:

валовое накопление основного капитала;

прирост запасов материальных оборотных средств;

чистое приобретение ценностей3.

Валовое накопление основного капитала – это вложение средств институциональными единицами-резидентами в объекты основного капитала с целью получения экономической выгоды от использования их в производстве в последующих периодах. Оно выражается в увеличении стоимости основного капитала институциональных единиц за счет приобретения (за вычетом выбытия) новых и существующих основных фондов. В качестве компонентов валового накопления основного капитала рассматриваются также затраты на улучшение непроизведенных материальных активов и расходы, связанные с передачей права собственности на непроизводственные активы. При расчете валового накопления основного капитала базой служат данные об объеме инвестиций в основной капитал, которые корректируются с учетом методологии СРС.

Изменение запасов материальных оборотных средств включает в себя прирост запасов сырья и материалов, готовой продукции, незавершенного производства, товаров для перепродажи, государственных материальных резервов.

Чистый экспорт товаров и услуг представляет собой разность между экспортом и импортом товаров и услуг во внутренних ценах.

ВРП методом конечного использования исчисляется как сумма следующих компонентов:

конечное потребление товаров и услуг,

валовое накопление,

чистый экспорт товаров и услуг.

Статистическое расхождение между произведенными и использованным валовым региональным продуктом может возникнуть ввиду различия источников данных и классификаций, используемых в расчетах разными методами, недостатка необходимой информации и других причин объективного и субъективного характера. Оно служит общей оценкой качества проводимых расчетов в рамках СРС.

2. Методы социально-экономического прогнозирования


По оценкам некоторых ученых насчитывается более 150 методов прогнозирования. Базовых методов гораздо меньше, многие из “методов” скорее относятся к отдельным способам и процедурам прогнозирования, либо представляют собой набор отдельных приемов, отличающихся от базовых методов количеством частных приемов и последовательностью их применения.

Под методом прогнозирования понимается совокупность приемов и способов мышления. Позволяющих на основе анализа ретроспективных данных, экзогенных (внешних) и эндогенных (внутренних) связей объекта прогнозирования, а также их измерения в рамках рассматриваемого явления или процесса вывести суждения определенной достоверности относительно будущего развития объекта.

Методы прогнозирования позволяют найти меру влияния отдельных закономерностей и причин развития, представить объект прогноза как динамическую систему измеренных с определенной степенью достоверности взаимодействий реальных явлений, факторов, сил общественной деятельности и тем самым дать возможность воспроизвести с определенной степенью вероятности поведение этой системы в будущем.

Методы экономического прогнозирования классифицируются по следующим признакам: степени формализации; общему принципу действия; способу получения прогнозной информации.

По степени формализации, т.е. изучения какой-либо содержательной области знания в виде формальной системы, связанной с усилением роли формальной логики и использованием математических методов научных исследований, методы экономического прогнозирования можно разделить на интуитивные и формализованные.

Интуитивные методы прогнозирования используются в тех случаях, когда невозможно учесть влияние многих факторов из-за значительной сложности объекта прогнозирования. В этом случае используются оценки экспертов. При этом различают индивидуальные и коллективные экспертные оценки, которые объединяет общий принцип действия.

В состав индивидуальных экспертных оценок входят: метод “интервью”, аналитический метод, построение сценария, метод психоинтеллектуальной генерации идей. При разграничении указанных методов используется третий признак классификации метод – способ получения прогнозной информации. Методы коллективных экспертных оценок включают в себя методы “комиссий”, “коллективной генерации идей” (мозговая атака), “Дельфи”, матричный метод и др.

В группу формализованных методов входят подгруппы: методы прогнозной экстраполяции, системно-структурные методы и модели, ассоциативные методы, методы опережающей информации. К первой подгруппе относятся методы экспоненциального сглаживания, скользящих средних и др. Кроме того, широко используются в процессе экономического прогнозирования нормативный и балансовый методы. Особое место в классификации методов экономического прогнозирования занимают комбинированные методы, которые объединяют различные методы. Например, коллективные экспертные оценки и методы моделирования или статистические методы и опрос экспертов.

Формализованные методы прогнозирования

Эти методы базируются на математической теории, которая обеспечивает повышение достоверности и точности прогнозов, значительно сокращает сроки их выполнения, позволяет обеспечить деятельность по обработке информации и оценке результатов.

Методы прогнозной экстраполяции

Метод экстраполяции заключается в приложении определенной для базисного периода тенденции развития экономического процесса к прогнозируемому периоду, он основывается на сохранении в будущем сложившихся условий развития процесса. При использовании этого метода необходимо иметь информацию об устойчивости тенденций развития объекта за срок, в 2-3 раза превышающий срок прогнозирования. Длительная тенденция изменения экономических показателей называется трендом. Последовательность действий при экстраполировании:

четкое определение задачи, выдвижение гипотез о возможном развитии прогнозируемого объекта, рассмотрение факторов, стимулирующих или препятствующих развитию данного объекта, определение необходимой экстраполяции и ее допустимой дальности;

выбор системы параметров, унификация различных единиц измерения, относящихся к каждому параметру в отдельности;

сбор и систематизация данных, проверка их однородности и сопоставимости;

выявление тенденций или симптомов изменения изучаемых величин в ходе статистического анализа и непосредственной экстраполяции данных.

Операцию экстраполяции в общей форме можно представить в виде определения значения функции:


Уi + L = F (Уi Ч L),


где Уi + L – экстраполируемое значение уровня;

L – период упреждения;

Уi – уровень, приняты за базу экстраполяции.

Простейшая экстраполяция может быть проведена на основе средних характеристик ряда: среднего уровня, среднего абсолютного прироста и среднего темпа роста.

Наиболее простым и известным является метод скользящих средних, осуществляющий механическое выравнивание временного ряда. Суть метода заключается в замене фактических уровней ряда расчетными средними, в которых погашаются колебания.

Для целей краткосрочного прогнозирования также может использоваться метод экспоненциального сглаживания. Средний уровень ряда на момент t равен линейной комбинации фактического уровня для этого же момента Статистический анализ и прогнозирование и среднего уровня прошлых и текущего наблюдений.


Статистический анализ и прогнозирование


где Статистический анализ и прогнозирование – экспоненциальная средняя (сглаженное значение уровня ряда) на момент t; α – вес текущего наблюдения при расчете экспоненциальной средней; Статистический анализ и прогнозирование – фактический уровень динамического ряда в момент времени t; Статистический анализ и прогнозирование –экспоненциальная средняя предыдущего периода.

Экстраполяция тренда возможна, если найдена зависимость уровней ряда от фактора времени t, в этом случае зависимость имеет вид:


Статистический анализ и прогнозирование.


Модель стационарного процесса, выражающее значение показателя Статистический анализ и прогнозирование в виде линейной комбинации конечного числа предшествующих значений этого показателя и аддитивной случайной составляющей, называется моделью авторегрессии.


Статистический анализ и прогнозирование,


где α – константа, β – параметр уравнения, Статистический анализ и прогнозирование - случайная компонента.

Системно-структурные методы и модели

В морфологическом анализе систематически исследуются все комбинации при проведении качественных изменений основных параметров концепции и посредством этого выявляются возможности новых комбинаций.

Матричный подход используется для проверки согласования с различными горизонтально действующими факторами. Двумерные матрицы дают быстрый метод оценки первоочередности того или иного из предполагаемых вариантов. Этому принципу соответствует распространенный в менеджменте метод SWOT анализа, т.е. учет слабых и сильных сторон объекта, угроз и преимуществ во внешней среде.

К методам статистического моделирования относятся уравнения регрессии. Описывающие взаимосвязи временных рядов независимых признаков и результативных признаков. Прогнозные уровни рассчитываются посредством подстановки в уравнение регрессии прогнозных значений признаков-факторов, которые могут быть получены, например, на основе экстраполяции.

Инструментом прогнозирования, учитывающим требования системного подхода к объекту и его количественным характеристикам, являются эконометрические модели. Областью их приложений являются макроэкономические процессы на уровне национальной экономики, ее секторов и отраслей, экономики территорий.


2.2 Эконометрические модели прогнозирования


Объектом статистического изучения в социальных науках являются сложные системы. Измерение тесноты связей между переменными, построение изолированных уравнений регрессии недостаточны для описания таких систем и объяснения механизма их функционирования. Отдельно взятое уравнение множественной регрессии не может характеризовать истинные влияния отдельных признаков на вариацию результирующей переменной. Именно поэтому в экономических исследованиях важное место заняла проблема описания структуры связей между переменными системой так называемых одновременных уравнений или структурных уравнений. Например, модель национальной экономики включает в себя следующую систему уравнений: функции потребления, инвестиций, тождество доходов и т.д. Это связано с тем, что макроэкономические показатели, являясь обобщающими показателями состояния экономики, чаще всего взаимозависимы. Так, расходы на конечное потребление в экономике зависят от валового национального дохода. Вместе с тем величина валового национального дохода рассматривается как функция инвестиций.

Эконометрические модели описывают взаимообусловленное развитие социально-экономических процессов на основе информации, отражающей распределение их уровней во времени и в пространстве однородных объектов. Наиболее важной задачей является оценка и проверка экономической модели. Эконометрическое моделирование охватывает весь цикл решения экономической задачи – от ее постановки до содержательной интерпретации результатов статистического анализа и прогнозирования.

Классификация переменных в эконометрических моделях.

1. Эндогенные переменные, т.е экономические величины, которые являются зависимыми и объясняются эконометрической моделью.

2. Экзогенные переменные, определяемые вне модели. Они не объясняются моделью и являются внешними, заданными экономическими величинами.

3. Лаговые переменные, значения которых отстают на один или несколько периодов. Поскольку лаговые переменные в период времени t также не объясняются эконометрической моделью, то их можно отнести к заранее заданным экзогенным.

4. Предопределенные переменные, к которым относятся:

а.) обычные экзогенные переменные, они заранее предопределены, так как объясняются фактами, лежащими вне модели;

б.) лаговые экзогенные переменные, они заранее предопределены, так как их значения принадлежат предшествующим периодам и объясняются вне модели;

в.) лаговые эндогенные переменные, их предопределенность следует из предшествующего объяснения в эконометрической модели.

5. Совместно зависимые переменные, которые определяются не одним уравнением, а одновременными уравнениями модели.

6. Возмущающие переменные, т.е. экономические величины, не входящие в уравнения эконометрических моделей, но оказывающие влияние на совместно зависимые переменные.

Виды эконометрических моделей

В зависимости от цели исследования и поставленных задач эконометрическая модель может быть представлена в различных видах.

1. Структурная форма модели. Она отражает одно- и многосторонние стохастические причинные отношения между экономическими величинами в их непосредственном виде. Эта система уравнений, отражающих наличие одновременных экономических взаимосвязей, называется системой одновременных или структурных уравнений. В структурном уравнении содержится одна или несколько совместно зависимых переменных.


Статистический анализ и прогнозирование


Наряду со структурными уравнениями эконометрическая модель может содержать так называемые определяющие уравнения – тождества. Тождества не содержат возмущений и их параметры в общем случае равны единице, следовательно, они не подлежат оценке. Примером может быть следующая модель:

Статистический анализ и прогнозирование;

Статистический анализ и прогнозирование;

Статистический анализ и прогнозирование.


2. Полная эконометрическая модель:

а.) она охватывает те переменные, которые оказывают существенное влияние на совместно зависимые переменные, а возмущения имеют случайный характер;

б.) она содержит столько уравнений, сколько в ней имеется совместно зависимых переменных;

в.) система уравнений имеет однозначное решение относительно совместных зависимых переменных.

Модель должна быть полной, когда необходимо количественно описать экономическое явление или когда она применяется для прогнозирования. Структурная форма важна при конструировании модели, при получении прогнозных значений и принятии решений главная роль принадлежит приведенной, или прогнозной форме.

3. Прогнозная, или приведенная форма эконометрической модели. В данном случае решается система линейных уравнений относительно эндогенных совместно зависимых переменных. Эти переменные являются линейными функциями от предопределенных и возмущающих переменных.


Статистический анализ и прогнозирование


Коэффициенты уравнений в модели являются комбинациями всех структурных коэффициентов совместно зависимых переменных и соответствующих предопределенных переменных во всех структурных уравнениях.

4. Рекурсивная модель. Модель может быть представлена в следующем виде:


Статистический анализ и прогнозирование


В данной системе линейных уравнений зависимая переменная одного уравнения является фактором в других уравнениях.

5. Модель из системы независимых уравнений. В системе каждая эндогенная переменная Статистический анализ и прогнозирование рассматривается как функция одного и того же набора факторов Статистический анализ и прогнозирование.


Статистический анализ и прогнозирование


Эндогенные переменные независимы между собой, структурная и приведенная формы таких моделей совпадают.

Проблемы идентификации в эконометрических моделях

При изучении систем одновременных уравнений, описывающих взаимосвязи, каждое структурное уравнение должно быть проверено на идентифицируемость. Идентифицируемость структурных уравнений означает, что посредством линейной комбинации некоторых или всех уравнений модели невозможно получить ни одно уравнение, которое противоречило бы модели и параметры которого отличались бы от параметров структурных уравнений, подлежащих оценке.

Применяются следующие критерии идентифицируемости для полной эконометрической модели.

1. Необходимым, но не достаточным условием идентифицируемости модели является следующее требование-критерий: число предопределенных переменных (D), которые содержатся в модели, но исключены из рассматриваемого структурного уравнения, по крайней мере должно быть равно числу совместно зависимых (эндогенных) переменных (H) в этом же структурном уравнении минус единица.

Критерий можно записать так:


D ≥ H – 1.


При D = H – 1 имеет место точная идентификация, т.е. число ограничений на параметры модели достаточно, чтобы однозначно определять параметры структурных уравнений по их приведенной форме.

При D > H – 1 уравнение сверхидентифицируемо. В данном случае имеется больше ограничений на параметры модели, чем это необходимо для идентификации.

При D < H – 1 структурное уравнение неидентифицируемо, т.к. число ограничений является недостаточным.

2. Необходимое и достаточное условие идентифицируемости модели определяется на основе матрицы. Составленной из коэффициентов при переменных, исключенных из исследуемого уравнения. Ранг этой матрицы должен быть не менее числа совместно зависимых эндогенных переменных минус единица.

Идентификация структурных моделей предполагает, что возмущения распределены независимо друг от друга. Т.к. независимость возмущений является одним из требований рекурсивной модели, рекурсивные модели всегда идентифицируемы.

Оценивание параметров эконометрических моделей

Обыкновенный метод наименьших квадратов может применяться для оценивания параметров системы независимых уравнений, рекурсивных и моделей из взаимозависимых переменных.

Для решения идентифицируемых уравнений применяется косвенный метод наименьших квадратов. Обычный МНК не учитывает одновременных соотношений между совместно зависимыми переменными, поэтому не может непосредственно применяться.

Модель вначале представляется в прогнозной (приведенной) форме. Применяя МНК к каждому полученному уравнению, оценивают все параметры (коэффициенты) системы в прогнозной форме. Так как по предположению все структурные уравнения точно идентифицируемы, на следующем этапе однозначно определяются структурные коэффициенты по коэффициентам прогнозных уравнений. То есть структурные коэффициенты оцениваются косвенно через оценки параметров прогнозной модели.

Для решения сверхидентифицированных уравнений применяется двухшаговый метод наименьших квадратов, учитывающий многосторонние связи совместно зависимых переменных. В данном случае структурные уравнения содержат меньше коэффициентов, чем приведенные.

Метод является обобщением обычного МНК и выполняется в два этапа. Основная идея двухшагового МНК заключается в замене зависимых переменных Статистический анализ и прогнозирование на их оценки Статистический анализ и прогнозирование. Благодаря этому содержащиеся в уравнениях переменные приобретают характер предопределенных переменных и применение МНК дает удовлетворительные оценки.

Алгоритм метода включает следующие шаги:

Структурные уравнения преобразовываются в приведенные.

Приведенные уравнения решаются с помощью МНК.

Проверяется надежность уравнений по F-критерию.

Если уравнения надежны, по ним вычисляются расчетные значения эндогенных переменных для каждой единицы совокупности.

Эти расчетные значения эндогенных переменных, находящихся в правой части структурных уравнений, и соответствующие значения экзогенных переменных используются для решения структурных уравнений с помощью МНК.

Вновь проверяется надежность полученных решений. Эта проверка необходима, так как при ДМНК решенные структурные уравнения качественно отличны от приведенных уравнений, в том числе имеют другое число степеней свободы вариации, поэтому надежность приведенных уравнений еще не гарантирует надежность решения структурных уравнений.

3. Анализ производства ВРП республики Бурятия


Анализ произведенного ВРП осуществляется на основе следующих показателей:

- удельный вес региона в ВРП России, который зависит от уровня экономического развития, отраслевого состава экономики и от размеров региона;

- величина ВРП на душу населения и место, занимаемое регионом по этому показателю, характеризующие вклад каждого региона в создание ВВП России;

- отраслевой состав ВРП, который показывает вклад каждой отрасли в формирование ВРП;

- динамика ВРП в реальном исчислении, характеризующая темпы его экономического роста.

Анализ использования доходов на региональном уровне может быть осуществлен с помощью следующих относительных показателей:

- структура расходов на конечное потребление, отражающая степень участия различных секторов (домашних хозяйств, государственного управления и некоммерческих организаций, обслуживающих домашние хозяйства) в финансировании расходов на конечное потребление;

- доля фактического конечного потребления домашних хозяйств в ВРП, которая показывает, какая часть ВРП была использована на фактическое конечное потребление домашних

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: