Метод Монте-Карло

1. Теоретическая часть

Метод Монте-Карло

2. Практическая часть

Задача 2

Задача 3

1. Теоретическая часть


Метод Монте-Карло


Датой рождения метода Монте-Карло принято считать 1949 г., когда американские ученые Н.Метрополис и С.Улам опубликовали статью «Метод Монте-Карло», в которой систематически его изложили. Название метода связано с названием города Монте-Карло, где в игорных домах (казино) играют в рулетку — одно из простейших устройств для получения случайных чисел, на использовании которых основан этот метод.

Специальный метод изучения поведения заданной статистики при проведении многократных повторных выборок, существенно использующий вычислительные возможности современных компьютеров. При проведении анализа по методу Монте-Карло компьютер использует процедуру генерации псевдослучайных чисел для имитации данных из изучаемой генеральной совокупности. Процедура анализа по методу Монте-Карло модуля Моделирование структурными уравнениями строит выборки из генеральной совокупности в соответствии с указаниями пользователя, а затем производит следующие действия:

Для каждого повторения по методу Монте-Карло:

Имитирует случайную выборку из генеральной совокупности,

Проводит анализ выборки,

Сохраняет результаты.

После большого числа повторений, сохраненные результаты хорошо имитирует реальное распределение выборочной статистики. Метод Монте-Карло позволяет получить информацию о выборочном распределении в случаях, когда обычная теория выборочных распределений оказывается бессильной.

ЭВМ позволяют легко получать так называемые псевдослучайные числа (при решении задач их применяют вместо случайных чисел); это привело к широкому внедрению метода во многие области науки и техники (статистическая физика, теория массового обслуживания, теория игр и др.). Метод Монте-Карло используют для вычисления интегралов, в особенности многомерных, для решения систем алгебраических уравнений высокого порядка, для исследования различного рода сложных систем (автоматического управления, экономических, биологических и т.д.).

Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину X, математическое ожидание которой а:


Метод Монте-Карло(1)


Практически же поступают так: производят п испытаний; в результате которых получают п возможных значений X, вычисляют их среднее арифметическое


Метод Монте-Карло (2)


и принимают х в качестве оценки (приближенного значения) а * искомого числа а:


Метод Монте-Карло (3)


Поскольку метод Монте-Карло требует проведения большого числа испытаний, его часто называют методом статистических испытаний. Теория этого метода указывает, как наиболее целесообразно выбрать случайную величину X, как найти ее возможные значения. В частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой а *.

Отыскание возможных значений случайной величины Х (моделирование) называют «разыгрыванием случайной величины». Изложим лишь некоторые способы разыгрывания случайных величин и укажем, как оценить допускаемую при этом ошибку.


Оценка погрешности метода Монте-Карло


Пусть для получения оценки а * математического ожидания а случайной величины Х было произведено п независимых испытаний (разыграно п возможных значений Х) и по ним была найдена выборочная средняя Метод Монте-Карло, которая принята в качестве искомой оценки: а* = Метод Монте-Карло. Ясно, что если повторить опыт, то будут получены другие возможные значения X, следовательно, другая средняя, а значит, и другая оценка а*. Уже отсюда следует, что получить точную оценку математического ожидания невозможно. Естественно, возникает вопрос о величине допускаемой ошибки. Ограничимся отысканием лишь верхней границы допускаемой ошибки с заданной вероятностью (надежностью) Метод Монте-Карло :


Метод Монте-Карло (4)


Интересующая нас верхняя граница ошибки Метод Монте-Карло есть не что иное, как «точность оценки» математического ожидания по выборочной средней при помощи доверительных интервалов. Поэтому воспользуемся результатами, полученными ранее, и рассмотрим следующие три случая.

1. Случайная величина Х распределена нормально и ее среднее квадратическое отклонение Метод Монте-Карло- известно. В этом случае с надежностью у верхняя граница ошибки

Метод Монте-Карло (5)


где п — число испытаний (разыгранных значений X); t — значение аргумента функции Лапласа, при котором Ф(t) == Метод Монте-Карло/2, Метод Монте-Карло — известное среднее квадратическое отклонение X.

2. Случайная величина Х распределена нормально, причем ее среднее квадратическое отклонение Метод Монте-Карло неизвестно. В этом случае с надежностью Метод Монте-Карло верхняя граница ошибки


Метод Монте-Карло (6)


где п — число испытаний; s — «исправленное» среднее квадратическое отклонение, t находят по таблице значений ty == t{Метод Монте-Карло,n}.

3. Случайная величина Х распределена по закону, отличному от нормального. В этом случае при достаточно большом числе испытаний (n > 30) с надежностью, приближенно равной Метод Монте-Карло, верхняя граница ошибки может быть вычислена по формуле (5), если среднее квадратическое отклонение Метод Монте-Карло случайной величины Х известно; если же Метод Монте-Карло-неизвестно, то можно подставить в формулу (5) его оценку s — «исправленное» среднее квадратическое отклонение либо воспользоваться формулой (6). Заметим, что чем больше п, тем меньше различие между результатами, которые дают обе формулы. Это объясняется тем, что при п —> Метод Монте-Карло распределение Стьюдента стремится к нормальному. В частности, при п=--100, Метод Монте-Карло=0,95 верхняя граница ошибки равна 0,098 по формуле (5) и 0,099 по формуле (6). Как видим, результаты различаются незначительно.

Замечание. Для того чтобы найти наименьшее число испытаний, которые обеспечат наперед заданную верхнюю границу ошибки Метод Монте-Карло, надо выразить п из формул (5) и (6):

Метод Монте-Карло


2. Практическая часть


Задача 2


Исходя из статистических данных о деятельности торгового предприятия, с помощью регрессионной зависимости вида


Y = a*Х + b


установить связь между потерями на рекламу (X) и объемом реализации (Y).


2.1. Вычислить параметры зависимости a и b методом наименьших квадратов.


2.2. Оценить соответствие построенной зависимости статистическим данным.


Вариант 7 x 109 107 108 111 106 105 104

y 234 235 236 237 238 239 240

Выполнение задания


Для выполнения заданий используем пакет электронных таблиц Excel.

2.1 Блок исходных данных формируется в первых двух столбцах (A3:B9).

2.2 Вводится гипотеза, что между фактором Х и показателем Y существует линейная стохастическая зависимость Метод Монте-Карло= a · X +b

Оценки параметров a и b парной регрессии вычисляются по формулам

Метод Монте-Карло

Метод Монте-Карло


За блоком исходных данных находится блок промежуточных расчетов.

Для нахождения произведения Метод Монте-Карло в ячейку C3 вводится формула =A3·B3. Далее копируем полученную формулу в другие ячейки столбца C. Значения Метод Монте-Карловычисляем в столбце D.

Для определения сумм столбцов используем кнопку автосуммирования на панели инструментов ∑. После установления курсора на ячейку A10 нажимаем ∑ на панели инструментов, выделяем диапазон ячеек А3:А9, нажимаем Enter. Введенная формула копируется в необходимые ячейки 10-ой строки. Средние значения X, Y вычисляются в ячейках D11, D12 с использованием встроенной статистической функции СРЗНАЧ ():

=СРЗНАЧ(A3:A9) и =СРЗНАЧ(B3:B9).

В ячейки В12, В13 вводятся формулы для определения оценок параметров соответственно a и b.

=(B11*C10-B10*A10)/(B11*D10-A10^2) – для параметра а;

=D12-B12*D11 – для параметра b.

а=-0,602, b=301,55,

уравнение регрессии:

Y=-0,602ЧХ + 301,55


2.3. Для вычисления расчетных значений Метод Монте-Карло(і=Метод Монте-Карло) в ячейку E3 вводим формулу Метод Монте-Карло с абсолютными ссылками координат-параметров a и относительной ссылкой координаты Метод Монте-Карло. Полученную формулу в ячейке E3 копируем в блок E4:E9 В ячейке E10 будет находиться сумма блока E3:E9. Поскольку математическое ожидание отклонения фактических данных от расчетных равняется нулю, то при правильном выполнении расчетов значения ячеек B10 и E10 будут совпадать.

Для определения адекватности принятой эконометрической модели экспериментальным данным воспользуемся F-критерием Фишера. Расчетное значение критерия Фишера определяется по формуле:


Метод Монте-Карло


Значение Метод Монте-Карло вычисляем соответственно в блоках F3:F9, G3:G9, H3:H9, а их суммы в блоке F10:H10.

Значения коэффициента детерминации Метод Монте-Карловычисляется в ячейке F11 с использованием встроенной математической функции КОРЕНЬ.

Для оценки коэффициента корреляции


Метод Монте-Карло


в ячейку I3 вводим формулу для вычисления значения Метод Монте-Карло и копируется в блок I4:I9. Сумма блока I3:I9 вычисляется в ячейке I10.

Значения коэффициента корреляции вычисляется в ячейке F13.

Kkor=-0,672194

Расчетное значение критерия Фишера: Fроз= 4,121495

Табличное значение F-критерия для вероятностей P=0,95 и числа степеней свободы

K1 = m = 1,

K2 = n – m – 1 = n – 2 = 7 – 2 = 5 равняется: F(0.95;1;5)= 5,99


Поскольку Метод Монте-Карло, то с надежностью P=0,95 эконометрическую модель можно считать неадекватной экспериментальным данным. Об этом также говорит невысокое значение коэффициента корреляции Kkor=-0,672194


Таблица с расчетными данными:

Метод Монте-Карло


Задача 3


Предприятие имеет 7 филиалов по реализации продукции. Руководству предприятия необходимо, исходя из статистических данных об их деятельность оценить силу зависимости товарооборота (Y) от факторов: объема торговой площади (S), интенсивности потока покупателей (N) и стоимости основных фондов (F). С помощью линейной регрессионной модели вида

Метод Монте-Карло,


установить связь между товарооборотом и двумя наиболее существенными факторами.

3.1. Вычислить коэффициенты корреляции между результативным признаком Y и факторами: S, N и F.

3.2. Определить два фактора, которые наиболее влияют на товарооборот Y.

3.3. Вычислить параметры регрессионной модели а , b , с методом наименьших квадратов.

3.4. Оценить соответствие построенной зависимости статистическим данным.


Вариант 7 S, кв.м. 15 23 18 18 19 17 23

N, чел. 567 568 569 345 234 453 345

F,тис.грн. 10 7 11 28 15 10 57

Y,млн.грн 0,25 0,24 0,23 0,28 0,23 0,27 0,27

Выполнение задания


3.1. Исходные данные факторов размещаем в блоке B2:D18, а показатели в столбце E2:E8.

3.2. В блоке A13:C14 используя встроенную функции Excel =КОРРЕЛ() находим коэффициенты корреляции между показателем Y и факторами Х1, Х2, Х3


Корф. кор.-ции
Y - X1 Y - X2 Y - X3
0,208604 -0,60362 -0,04747

3.3. Как видно из корреляционной матрицы для регрессионной модели можно выбрать две переменные – Х1 и Х2, так как для них значения коэффициента корреляции с показателем близки к 1 и равны 0,208604и -0,60362 соответственно.

3.4. Допустим, что между показателем Y и факторами Х1, Х2 существует линейная зависимость Метод Монте-Карло. Найдем оценки параметров, используя метод наименьших квадратов (в матричных операциях). Запишем систему нормальных уравнений в матричной форме


Метод Монте-Карло, где Метод Монте-Карло


Если помножить матричное уравнение слева на матрицу Метод Монте-Карло, то для оценки параметров вектора Метод Монте-Карло получим формулу


Метод Монте-Карло.


Нахождение оценок параметров регрессии:

1. Находим транспонированную матрицу Метод Монте-Карло в блоке E13:K15 по отношению к матрице Метод Монте-Карло в блоке A2:C8, используя в категории "Ссылки и массивы" встроенную функцию ТРАНСП(A2:C8).

2. Находим произведение матриц Метод Монте-Карло в блоке A18:C20, используя встроенную математическую функцию МУМНОЖ(блок данных первой матрицы A18:C20; блок данных второй матрицы A2:C8).

3. Обратную матрицу Метод Монте-Карло находим в блоке D18:F20, используя встроенную математическую функцию =МОБР(A18:C20).

4. Произведение матриц Метод Монте-Карло находим в блоке H18:H20, встроенную математическую функцию =МУМНОЖ(E13:K15;E2:E8).

5. Оценки вектора находим в блоке J39:J41, встроенную математическую функцию =МУМНОЖ(D18:F20;H18:H20).


[XT][X]-1[XT]Y
0,32512
0,00040
-0,00005

a= 0,00040, b= -0,00005, c= 0,32512.

Уравнение регрессии:


Y=0,00040X1 + -0,00005X2 + 0,32512


3.5. Проверим адекватность принятой модели экспериментальным данным с помощью критерия Фишера. Расчетные значения Yрасч считаем в столбце F по формуле Yрасч=0,00040Х1+-0,00005Х2+0,32512..

Рассчитываем F-статистику Фишера с m и (n- m- 1) степенями свободы:


Метод Монте-Карло


где m — количество факторов, которые вошли в модель; m=2

n – общее количество наблюдений; n=7

В ячейках F2:F10 находятся расчетные значения показателя, а в ячейках G2:G10 квадраты их отклонений от экспериментальных значений.

В ячейках H2:H10 квадраты отклонений от среднего значения.

Расчетное значение Fрасч= 1,19895497

По F- таблице Фишера находим критическое значение Fкр с m и (n-m-1) степенями свободы: Fкрит(0,95;2;4)= 6,94

Расчетное значение критерия 1,19895497 меньше критического, значит с надежностью Метод Монте-Карло можно считать, что принятая математическая модель неадекватна по экспериментальным данным.


Таблица с расчетными данными:

Метод Монте-Карло

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: