Xreferat.com » Рефераты по экономико-математическому моделированию » Построение моделей статики по методике активного эксперимента

Построение моделей статики по методике активного эксперимента

Содержание


Введение

Задание

1 Полный факторный эксперимент

1.1 Составление матрицы планирования

1.2 Проведение эксперимента на объекте исследования

1.3 Проверка воспроизводимости эксперимента

1.4 Получение математической модели объекта

1.5 Проверка адекватности математического описания

2 Применение метода случайного баланса для выделения наиболее существенных входных переменных многофакторного объекта

2.1 Составление матрицы планирования

2.2 Проведение эксперимента на объекте исследования

2.3 Проверка воспроизводимости эксперимента

2.4 Построение диаграммы рассеяния

2.5 Последовательность выделения наиболее существенных переменных при помощи выборочных ортогональных матриц планирования

2.6 Выделение наиболее существенных парных взаимодействий

2.7 Вычисление оценок коэффициентов и составление неполной квадратичной модели объекта

2.8 Проверка адекватности математического описания

Заключение

Список используемых источников


ВВЕДЕНИЕ


Цель выполнения курсовой работы – закрепление и углубление знаний студентов по дисциплинам фундаментального, общетехнического и профессионального циклов, а также подробное изучение современных методов планирования экспериментов, математического моделирования объектов и систем контроля и управления.

Задачей курсовой работы является приобретение студентами навыков выбора необходимого плана эксперимента в соответствии с поставленной перед исследователем проблемой, построения матрицы планирования, обработки и анализа полученных результатов в зависимости от выбранного плана эксперимента.


Задание


Провести 5 серий измерений отклика (y) в соответствии с составленным планом ПФЭ типа 23 с центром в точке Построение моделей статики по методике активного эксперимента с координатами х10=40, х20=20, х30=80 и интервалами варьирования Dx1=Dx2=Dx3=10 при заданной случайной помехе.

Провести процедуру идентификации модели, используя расчетные формулы и экспериментальные данные, полученные с помощью установки «Моделирование объектов».

3. Построить матрицу планирования МСБ из 16 строк, основываясь на предпосылке, что исследуемые факторы должны быть смешаны случайным образом, для 8 независимых линейных факторов, варьируемых на двух уровнях.

4.Провести расчет целевой функции (y=y1+y2) в соответствии с составленным планом МСБ- МСБ с помощью ортогональных матриц планирования с центром в точке Построение моделей статики по методике активного эксперимента с координатами х10=30, х20=40, х30=15, х40=25, х50=20, х60=75, х70=60, х80=30; и интервалами варьирования Dx1...Dx8=10 при заданной случайной помехе и проведенных (m) серий (m=2) измерений откликов y1 и y2.

1 Полный факторный эксперимент


Полным факторным экспериментом (ПФЭ) называется эксперимент, реализующий все возможные неповторяющиеся комбинации уровней n независимых управляемых факторов, каждый из которых варьируют на двух уровнях. Число этих комбинаций N=2n определяет тип ПФЭ. В моем варианте задания используется планирование типа N=23, т.е. объект с тремя (n=3) независимыми управляемыми факторами х1,х2,х3. При планировании эксперимента проводят преобразование размерных управляемых независимых факторов хi в безразмерные (нормированные)


Построение моделей статики по методике активного эксперимента. (1)


1.1 Составление матрицы планирования


Матрицу планирования ПФЭ для рассматриваемого примера (n = 3) можно представить в виде табл. 1.1.


Таблица 1.1

g z0 z1 z2 z3 z12 z13 z23 z123
1 1 -1 -1 -1 1 1 1 -1
2 1 1 -1 -1 -1 -1 1 1
3 1 -1 1 -1 -1 1 -1 1
4 1 1 1 -1 1 -1 -1 -1
5 1 -1 -1 1 1 -1 -1 1
6 1 1 -1 1 -1 1 -1 -1
7 1 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1 1

1.2 Проведение эксперимента на объекте исследования


Так как изменение отклика y носит случайный характер, то в каждой точке Построение моделей статики по методике активного эксперимента приходится проводить т параллельных опытов и результаты наблюдений yg1, yg2, ..., ygm усреднять:


Построение моделей статики по методике активного эксперимента. (3)


Согласно заданию число параллельных опытов в каждой строке МП m = 5. Перед реализацией плана на объекте необходимо рандомизировать (расположить в случайном порядке) варианты варьирования факторов, т.е. с помощью таблицы равномерно распределенных случайных чисел или компьютерной программы для проведения процесса рандомизации определить последовательность реализации вариантов варьирования плана в N ґ m опытах.


Таблица 1.2

N t,c X1 X2 X3 X4 Y1 Yсред Sg2 Y*
1 2 3 4 5 6 7 8 9 10
1 3,8 30 10 50 0 127,8


2 4,9 30 10 50 0 114,3


3 6 30 10 50 0 122,4


4 7,1 30 10 65 0 123,6


5 8,2 30 10 50 0 121 121,82 24,122 121,64
6 10,6 50 10 50 0 143,2


7 11,6 50 10 50 0 142,8


8 12,7 50 10 50 0 139,8


9 13,7 50 10 50 0 153,1


10 14,7 50 10 50 0 146,6 145,1 25,81 145,28
11 17,8 30 30 50 0 133,2


12 18,8 30 30 50 0 138,9


13 19,7 30 30 50 0 144,3


14 20,5 30 30 50 0 151,4


15 21,7 30 30 50 0 151,2 143,8 62,285 143,98
16 23,7 50 30 50 0 168,1


17 24,8 50 30 50 0 163,8


18 25,8 50 30 50 0 170,9


19 26,8 50 30 50 0 168,1


20 27,8 50 30 50 0 168,1 167,8 6,47 167,62
21 32,1 30 10 80 0 227,5


22 33 30 10 80 0 232,4


23 33,9 30 10 80 0 225,1


24 34,8 30 10 80 0 228,5


25 35,6 30 10 80 0 230,7 228,84 8,008 228,205
26 38,6 50 10 80 0 266,4


27 39,4 50 10 80 0 271,9


28 40,2 50 10 80 0 258,8


29 41 50 10 80 0 272,3


1 2 3 4 5 6 7 8 9 10
30 41,8 50 10 80 0 269,8 267,84 31,003 268,475
31 47,2 30 30 80 0 261


32 48 30 30 80 0 255,7


33 48,9 30 30 80 0 263,9


34 49,8 30 30 80 0 264,7


35 50,7 30 30 80 0 257,4 260,54 15,523 261,175
36 55 50 30 80 0 303,7


37 55,8 50 30 80 0 303,4


38 56,7 50 30 80 0 308,3


39 57,5 50 30 80 0 304,5


40 58,5 50 30 80 0 290,5 302,08 45,752 301,445

1.3 Проверка воспроизводимости эксперимента


Проверка воспроизводимости эксперимента есть не что иное, как проверка выполнения второй предпосылки регрессионного анализа об однородности выборочных дисперсий Построение моделей статики по методике активного эксперимента. Задача состоит в проверке гипотезы о равенстве генеральных дисперсий Построение моделей статики по методике активного эксперимента при опытах соответственно в точках Построение моделей статики по методике активного эксперимента. Оценки дисперсий находят по известной формуле


Построение моделей статики по методике активного эксперимента. (4)

Рассчитанные для рассматриваемого примера по формуле (4) значения Построение моделей статики по методике активного эксперимента занесены в последний столбец табл. 1.2.

Так как все оценки дисперсий получены по выборкам одинакового объема т = 5, то число степеней свободы для всех них одинаково и составляет


n1вос = m – 1. (5)


В этом случае для проверки гипотезы об однородности оценок Построение моделей статики по методике активного эксперимента дисперсий следует пользоваться критерием Koxpэнa, который основан на законе распределения отношения максимальной оценки дисперсии к сумме всех сравниваемых оценок дисперсий, т.е.


Построение моделей статики по методике активного эксперимента. (6)


Если вычисленное по данным эксперимента (эмпирическое) значение критерия G окажется меньше критического значения Gкр, найденного по таблице для n1вос = m – 1 и n2вос = N и выбранного уровня значимости qвос = 0,05 (в данном случае Gкр=0,391), то гипотеза об однородности выборочных дисперсий отвечает результатам наблюдений.


1.4 Получение математической модели объекта


При ПФЭ получаются независимые оценки b0, bi, bil соответствующих коэффициентов модели b0, bi, bil, т.е. b0 ® b0, bi ® bi, bil ® bil. Эти оценки легко найти по формулам

Построение моделей статики по методике активного эксперимента, Построение моделей статики по методике активного эксперимента, Построение моделей статики по методике активного эксперимента, (9)

Построение моделей статики по методике активного эксперимента, Построение моделей статики по методике активного эксперимента. (10)


Таблица 1.3

b0 204,7275
b1 15,9775
b2 13,8275
b3 60,0975
b12 0,4075
b13 4,1575
b23 2,6575
b123 0,2275

Рассчитанные значения коэффициентов приведены в таблице 1.3.

После определения оценок b коэффициентов регрессии необходимо проверить гипотезы об их значимости, т.е. проверить соответствующие нуль-гипотезы b = 0. Проверку таких гипотез производят с помощью критерия Стьюдента, эмпирическое значение которого


Построение моделей статики по методике активного эксперимента, (11)

где

Построение моделей статики по методике активного эксперимента – (12)


дисперсия оценки b коэффициента уравнения регрессии. Если найденная величина параметра ti превышает значение tкр, определенное из таблицы для числа степеней свободы nзн = N(m – 1), при заданном уровне значимости qзн = 0,05, то проверяемую нуль-гипотезу Н0: b = 0 отвергают и соответствующую оценку bi коэффициента признают значимой. В противном случае, нуль-гипотезу не отвергают и оценку b считают статистически незначимой, т.е. b = 0.

Рассчитанные значения критерия и значимость коэффициентов указаны в таблице 1.4.


Таблица 1.4

b0 t0 247,489 tтабл=2,036 значимый
b1 t1 19,31473
значимый
b2 t2 16,71565
значимый
b3 t3 72,65008
значимый
b12 t12 0,492615
незначимый
b13 t13 5,025878
значимый
b23 t23 3,212573
значимый
b123 t123 0,275018
незначимый

В данном варианте статистически незначимыми являются коэффициенты b12, b123, т.к. t12,t123<tтабл.

Математическую модель объекта составляют в виде уравнения связи отклика у и факторов xi, включающего только значимые оценки коэффициентов.

Построение моделей статики по методике активного эксперимента (13)


1.5 Проверка адекватности математического описания


Чтобы проверить гипотезу об адекватности математического описания опытным данным, достаточно оценить отклонение предсказанной по полученному уравнению регрессии величины отклика Построение моделей статики по методике активного эксперимента от результатов наблюдений Построение моделей статики по методике активного эксперимента в одних и тех же g-х точках факторного пространства.

Рассеяние результатов наблюдений вблизи уравнения регрессии, оценивающего истинную функцию отклика, можно охарактеризовать с помощью дисперсии адекватности

Построение моделей статики по методике активного эксперимента, (14)


где d – число членов аппроксимирующего полинома (значимых оценок коэффициентов модели объекта). Дисперсия адекватности определяется с числом степеней свободы


nад = N – d. (15)


Для данного варианта в соответствии с формулой (14) получим

Построение моделей статики по методике активного эксперимента.

Проверка гипотезы об адекватности состоит, по сути дела, в выяснении соотношения между дисперсией адекватности Построение моделей статики по методике активного эксперимента и оценкой дисперсии воспроизводимости отклика Построение моделей статики по методике активного эксперимента. Проверку гипотезы об адекватности производят с использованием F-критерия Фишера. Критерий Фишера позволяет проверить гипотезу об однородности двух выборочных дисперсий Построение моделей статики по методике активного эксперимента и Построение моделей статики по методике активного эксперимента. В том случае, если Построение моделей статики по методике активного эксперимента,F-критерий характеризуется отношением


Построение моделей статики по методике активного эксперимента. (16)


Если вычисленное по результатам наблюдений эмпирическое значение критерия F меньше критического Fкр, найденного из таблице для соответствующих степеней свободы:


n1ад = N – d , n2ад = nзн = N(m – 1) , (17)


при заданном уровне значимости qад (обычно qад = 0,05), то гипотезу об адекватности не отвергают. В противном случае гипотезу отвергают и математическое описание признается неадекватным.

В данном случае n1ад =2, n2ад =32, табличное значение критерия Fкр=3,302. Таким образом, модель признается адекватной.


2 Применение метода случайного баланса для выделения наиболее существенных входных переменных многофакторного объекта


При оптимизации многофакторного объекта основным этапом является получение математической модели, адекватно описывающей статический объект в изучаемом диапазоне изменения его входных переменных (факторов). При этом естественно стремиться к тому, чтобы математическое описание было возможно более простым при максимуме подобия, особенно при разработке способов и систем оптимального управления, когда важно достичь или поддерживать глобальный, а не локальный или частный экстремум. Однако решение этой задачи в реальных условиях обычно связано с серьезными трудностями, вызванными весьма большим количеством переменных Построение моделей статики по методике активного эксперимента, в той или иной степени влияющих на объект.

Методика регрессионного анализа основана на предположении, что учтены все или, по крайней мере, все существенные факторы, иначе полученная математическая модель окажется неадекватной в изучаемом диапазоне изменения переменных. Привлечение всего множества переменных к составлению математического описания может потребовать непомерного объема экспериментальной и вычислительной работы, что зачастую невыполнимо в силу технологических, экономических и прочих ограничений. Возникает необходимость предварительного отсеивания несущественных переменных и выделения тех входных воздействий Построение моделей статики по методике активного эксперимента, которые оказывают наиболее заметное влияние на целевую функцию.

Если число всех возможных факторов, влияющих на объект, не превышает 6 – 7, то для предварительного изучения объекта можно применить методы дробного или полного факторного эксперимента. Однако при большом числе рассматриваемых факторов методы ПФЭ и даже ДФЭ, предназначенные для тщательного изучения поверхности отклика, оказываются слишком громоздкими и трудоемкими для постановки отсеивающих опытов. В случае изучения более 8 – 10 факторов, если эксперименты недороги и если заведомо известно, что лишь немногие переменные являются существенными, следует применять метод случайного баланса (МСБ).

Важнейшей теоретической предпосылкой МСБ является априорное знание того, что из всей совокупности рассматриваемых переменных Построение моделей статики по методике активного эксперимента только небольшое их число (например, 10 ... 15 %) являются действительно существенными, остальные же могут быть отнесены к "шумовому полю" .

Под "шумовым полем" обычно понимают случайные помехи Построение моделей статики по методике активного эксперимента, о которых ничего или почти ничего неизвестно, и малозначимые или незначимые переменные (линейные и парные взаимодействия), которые нет смысла контролировать.

Основная идея метода заключается в том, что вместо дробных реплик, которые представляют собой систематические ортогональные выборки из ПФЭ, берутся случайные выборки. Тогда вектор-столбцы матрицы планирования можно считать не коррелированными (не связанными) или слабо коррелированными друг с другом. Совместные оценки оказываются смешанными случайным образом. Появляется возможность с высокой надежностью выделить и независимо оценить все доминирующие переменные.

Из сказанного следует, что МСБ обладает меньшей чувствительностью, чем ПФЭ и ДФЭ. Под чувствительностью метода обычно понимается способность выделять коэффициенты Построение моделей статики по методике активного эксперимента уравнения регрессии, значимо отличающиеся от нуля (т.е. способность отбрасывать нуль-гипотезу Н0: ai = 0). Зато он обладает большей разрешающей способностью: в благоприятных условиях, при одинаковом числе опытов, он позволяет независимо выделить существенные переменные среди гораздо большего числа рассматриваемых переменных, чем при ДФЭ и тем более ПФЭ.


2.1 Составление матрицы планирования


Построение матрицы планирования для проведения отсеивающих опытов выполняют на основе предпосылки, что исследуемые факторы должны быть смешаны случайным образом. Все линейные факторы zi (i = l, 2, ..., n) разбивают на группы, при этом стремятся заведомо взаимодействующие факторы включить в одну группу. Если же нет априорных сведений о физике процесса, то разбивку факторов по группам можно производить формально, с использованием таблицы (или программы) случайных чисел. Затем для каждой группы составляют МП на основе ПФЭ или ДФЭ.

В задании требуется исследовать 8 факторов z1, z2, z3, z4, z5, z6, z7, z8 и их взаимодействия и с помощью МСБ выделить самые существенные. Разобьем факторы на две группы: 1 – z1, z2, z3, z4, 2 - z5, z6, z7, z8.

Общая МП для МСБ составляется в виде таблицы 2.3 путем построчной стыковки таблиц 2.1 и 2.2 после рандомизации их строк с помощью таблицы случайных чисел или компьютерной программы для реализации процесса рандомизации. Общая МП в данном примере может иметь вид таблицы 2.3.


Таблица 2.1

g z1 z2 z3 z4
1 -1 -1 -1 -1
2 1 -1 -1 -1
3 -1 1 -1 -1
4 1 1 -1 -1
5 -1 -1 1 -1
6 1 -1 1 -1
7 -1 1 1 -1
8 1 1 1 -1
9 -1 -1 -1 1
10 1 -1 -1 1
11 -1 1 -1 1
12 1 1 -1 1
13 -1 -1 1 1
14 1 -1 1 1
15 -1 1 1 1
16 1 1 1 1

Таблица 2.2

g z5 z6 z7 z8
1 -1 -1 -1 -1
2 1 -1 -1 -1
3 -1 1 -1 -1
4 1 1 -1 -1
5 -1 -1 1 -1
6 1 -1 1 -1
7 -1 1 1 -1
8 1 1 1 -1
9 -1 -1 -1 1
10 1 -1 -1 1
11 -1 1 -1 1
12 1 1 -1 1
13 -1 -1 1 1
14 1 -1 1 1
15 -1 1 1 1
16 1 1 1 1

Таблица 2.3

g g' z1 z2 z3 z4 g'' z5 z6 z7 z8
1 4 1 1 -1 -1 2 1 -1 -1 -1
2 3 -1 1 -1 -1 16 1 1 1 1
3 2 1 -1 -1 -1 5 -1 -1 1 -1
4 5 -1 -1 1 -1 4 1 1 -1 -1
5 9 -1 -1 -1 1 11 -1 1 -1 1
6 11 -1 1 -1 1 3 -1 1 -1 -1
7 15 -1 1 1 1 10 1 -1 -1 1
8 7 -1 1 1 -1 6 1 -1 1 -1
9 16 1 1 1 1 9 -1 -1 -1 1
10 8 1 1 1 -1 1 -1 -1 -1 -1
11 1 -1 -1 -1 -1 14 1 -1 1 1
12 13 -1 -1 1 1 7 -1 1 1 -1
13 6 1 -1 1 -1 13 -1 -1 1 1
14 10 1 -1 -1 1 12 1 1 -1 1
15 14 1 -1 1 1 8 1 1 1 -1
16 12 1 1 -1 1 15 -1 1 1 1

Результаты МСБ анализируются с помощью диаграмм рассеяния либо с помощью выборочных ортогональных МП.


2.2 Проведение эксперимента на объекте исследования


Проведем, используя лабораторный стенд, эксперимент в районе базовой точки: х1=30, х2=40, х3=30, х4=40, х5=20, х6=40, х7=40, х8=20. Примем за интервал варьирования Δxi=10 (I=1,…,8). Число параллельных опытов m=2. Целевую функцию запишем как сумму: y=y1+y2.


Таблица 2.4

N t,c X1 X2 X3 X4 Y1 N t,c X5 X6 X7 X8 Y2 Y Yср S2

















1 26,1 40 60 5 15 111,3 1 10,5 30 65 50 20 102,3 213,6

2 26,8 40 60 5 15 101,8 2 11,1 30 65 50 20 103,7 205,5 209,55 32,805
3 19,4 20 60 5 15 84,9 3 81,1 30 65 70 40 205,8 290,7

4 20,1 20 60 5 15 92,2 4 81,8 30 65 70 40 202,1 294,3 292,5 6,48
5 12,9 40 40 5 15 77,5 5 23,2 10 65 70 20 106,7 184,2

6 13,9 40 40 5 15 75,4 6 24,1 10 65 70 20 109,3 184,7 184,45 0,125
7 31 20 40 25 15 107,1 7 17,9 30 85 50 40 137,1 244,2

8 32 20 40 25 15 113 8 18,3 30 85 50 20 130,7
Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
-->

Похожие рефераты: