Xreferat.com » Рефераты по экономико-математическому моделированию » Построение и анализ однофакторной эконометрической модели

Построение и анализ однофакторной эконометрической модели

Задача 1.


Однофакторная производственная функция накладных расходов в шахтном строительстве имеет вид


У=a0+a1x+e,


где У – накладные расходы, часть в затратах;

х – годовой объем затрат, тыс. грн;

На основании статистических данных по девяти шахтостроительным управлениям, используя 1МНК, найти оценки параметров производственной функции накладных расходов для шахтостроительного объединения. Дать общую характеристику достоверности и экономическую интерпритацию построенной модели.


Таблица 1 – Исходные данные

№ пп

Накладные расходы

Объем работ

1

27

15,6

2

30

15,3

3

28

14,9

4

29

15,1

5

26

16,1

6

25

16,7

7

28

15,4

8

26

17,1

9

25

16,8


Построение и анализ классической однофакторной эконометрической модели

1. Спецификация модели.

1.1 Идентификация переменных

Y – накладные расходы – результирующий показатель;

Х – объем работ – показатель-фактор;


Таблица 2 – Исходные данные и элементарные превращения этих данных для оценки модели.

№ пп

Накладные расходы

Объем работ

Х*X

Y*Y

ОценкаУ

Отклонение, е

Предсказанное Y

Остатки

1

27

15,6

243,36

729

27,64235

-0,642345002

27,642345

-0,642345

2

30

15,3

234,09

900

28,19401

1,805989034

28,19401097

1,805989

3

28

14,9

222,01

784

28,92957

-0,929565584

28,92956558

-0,9295656

4

29

15,1

228,01

841

28,56179

0,438211725

28,56178827

0,4382117

5

26

16,1

259,21

676

26,7229

-0,722901729

26,72290173

-0,7229017

6

25

16,7

278,89

625

25,61957

-0,619569802

25,6195698

-0,6195698

7

28

15,4

237,16

784

28,01012

-0,010122311

28,01012231

-0,0101223

8

26

17,1

292,41

676

24,88402

1,115984817

24,88401518

1,1159848

9

25

16,8

282,24

625

25,43568

-0,435681147

25,43568115

-0,4356811

Сумма

244

143

2277,4

6640

244

0

244

0

Среднее

27,11111111

15,88888889

253,04

737,78

27,11111

-

27,11111111

-


1.2 Общий вид линейной однофакторной модели и её оценки

Полученная диаграмма свидетельствует о слабой обратной зависимости. Введем гипотезу, что между фактором Х и показателем У нет корреляционной зависимости.

1.3 Оценка тесноты связи между результативным показателем У и фактором Х на основании коэффициента парной корреляции

Парные коэффициенты корреляции вычисляем по формуле:


– среднее квадратическое отклонение показателя Y;

– среднее квадратическое отклонение фактора X;

– дисперсия показателя Y;

– дисперсия показателя X;

– коэффициент ковариации признаков Y и Х;


По формуле





Мастер функций



Дисперсия Х


Ср. кв. отклон Х



Дисперсия Х


Ср. кв. отклон Х

0,658611111


0,811548588



0,658611111


0,811548588

Дисперсия У


Ср. кв. отклон У



Дисперсия У


Ср. кв. отклон У

3,111111111


1,763834207



3,111111111


1,763834207

Ковариация ХУ





Ковариация ХУ



-1,07654321





-1,07654321



rху

-0,8461




rху

-0,8461



Вывод: Поскольку коэффициент парной корреляции rху=-0,8461, то это свидетельствует об отсутствии тесной связи между объемом работ и накладными расходами.

2. Оценка параметров модели методом 1МНК

Таблица 3 – Оценка параметров модели

По формуле

Регрессия


Коэффициенты

56,32897439

У-пересечение

56,32897512

-1,8388865

Объем работ, Х

-1,838886546


Таким образом, оцененная эконометрическая модель:

у=56,32897439–1,838886546х

3. Общая характеристика достоверности модели

Для общей оценки адекватности принятой эконометрической модели данным, которые наблюдаем, воспользуемся коэффициентом множественной детерминации R2.


Таблица 4 – Общая характеристика достоверности моделей

По формуле

Регрессионная статистика

R

-0,84608053

Множественный R

-0,84608053

R2

0,715852263

R-квадрат

0,71585226


Вывод: Поскольку коэффициент множественной детерминации R2 = 0,71585226, то это свидетельствует, что вариация объема накладных расходов на 72% определяется вариацией объема работ и на 28% вариацией других факторов, которые не вошли в модель. Коэффициент корреляции R=-0,84608053 характеризует слабую связь между этими показателями. Модель не адекватна.



Задача 2. Построение и анализ многофакторной эконометрической модели


Условие задачи

По статистическим данным для 9 предприятий общественного питания за год построить линейную двухфакторную модель, которая характеризует зависимость между уровнем рентабельности (%), относительным уровнем затрат оборота (%) и трудоемкостью предприятий. Прогнозные значения факторов выбрать самостоятельно. Сделать экономический анализ характеристик взаимосвязи.


Исходные данные

№ п/п

Рентабельность

Затраты оборота

Трудоемкость

1

2,32

38,8

114

2

2,19

39,9

101,1

3

2,83

30,1

153,8

4

2,75

31,7

146

5

2,59

17,2

124,8

6

2,27

39,7

103,6

7

2,05

36,9

119

8

1,95

38,2

108,7

9

2,08

40,1

106,5


Построение и анализ классической многофакторной линейной эконометрической модели

1. Спецификация модели

1.1 Идентификация переменных

Многофакторная линейная эконометрическая модель устанавливает линейную зависимость между одним показателем и несколькими факторами.

Y – рентабельность – результирующий показатель;

Х1 – затраты оборота – показатель-фактор;

Х2 – трудоемкость – показатель-фактор.


Таблица 1 – Исходные данные и элементарные превращения этих данных для оценки модели

№ п/п

Y

X1

X2

Y*X1

Y*X2

X1*X2

Y*Y

X1*X1

X2*X2

1

2,32

38,8

114

90,016

264,48

4423

5,382

1505,44

12996

2

2,19

39,9

101,1

87,381

221,41

4034

4,796

1592,01

10221,2

3

2,83

30,1

153,8

85,183

435,25

4629

8,009

906,01

23654,4

4

2,75

31,7

146

87,175

401,5

4628

7,563

1004,89

21316

5

2,59

17,2

124,8

44,548

323,23

2147

6,708

295,84

15575

6

2,27

39,7

103,6

90,119

235,17

4113

5,153

1576,09

10733

7

2,05

36,9

119

75,645

243,95

4391

4,203

1361,61

14161

8

1,95

38,2

108,7

74,49

211,97

4152

3,803

1459,24

11815,7

9

2,08

40,1

106,5

83,408

221,52

4271

4,326

1608,01

11342,3

21

312,6

1077,5

717,965

2558,5

36788

49,94

11309,1

131815

Средн.

2,34

34,733

119,722

79,7739

284,28

4088

5,549

1256,57

14646,1


1.2 Оценка тесноты связи между показателем Y и факторами Х1 и Х2, а также межу факторами. (Диаграмма рассеяния)


Связь обратная

Связь обратная


Связь тесная прямая


Прозноз


1) Отношение Х1 и У

r=-0,5



2) Отношение Х1 и Х2

r=-0,4



3) Отношение У и Х2

r=0,5




1.2.1 Парные коэффициенты корреляции, корреляционная матрица

Для оценки тесноты связи между показателем Y и факторами Х1 и Х2, а также между факторами вычисляем парные коэффициенты корреляции, а потом составляем корреляционную матрицу, учитывая ее особенности:

– корреляционная матрица является симметричной;

– на главной диагонали размещены единицы.

Парные коэффициенты корреляции вычисляем по формулам:


– среднее квадратическое отклонение показателя Y;

– среднее квадратическое отклонение фактора X1;

– среднее квадратическое отклонение фактора X2;

– дисперсия показателя Y;

– дисперсия показателя X1;

– дисперсия показателя X2;

– коэффициент ковариации признаков Y и Х1;

– коэффициент ковариации признаков Y и Х2;

– коэффициент ковариации признаков X1 и Х2;


Таблица 2 – Расчет парных коэффициентов корреляции

По формуле


Мастер

функций


Дисперсия У

Ср. кв. отклон У

Дисперсия У

Ср. кв. отклон У

0,089133333

0,298552061

0,089133333

0,298552061

Дисперсия Х1

Ср. кв. отклон Х1

Дисперсия Х1

Ср. кв. отклон Х1

50,16666667

7,08284312

50,16666667

7,08284312

Дисперсия Х2

Ср. кв. отклон Х2

Дисперсия Х2

Ср. кв. отклон Х2

312,6550617

17,68205479

312,6550617

17,68205479

Ковариация УХ1


Ковариация УХ1


-1,386333333


-1,386333333


Ковариация УХ2


Ковариация УХ2


4,524851852


4,524851852


Ковариация Х1Х2


Ковариация Х1Х2


-70,76962963


-70,76962963



Коэффициенты парной корреляции

rух1

-0,655601546


rух1

-0,655601546

rух2

0,857139597


rух2

0,857139597

rух1х2

-0,565075617


rух1х2

-0,565075617


Корреляционная матрица


1

-0,655601546

0,857139597

-0,655601546

1

-0,565075617

0,857139597

-0,565075617

1


1.2.2 Коэффициенты частичной корреляции

В многомерной модели коэффициенты парной корреляции измеряют нечистую связь между факторами и показателем. Поэтому при построении двухфакторной модели целесообразно оценить связь между показателем и одним фактором при условии, что влияние другого фактора не считается. Для измерения такой чистой связи вычисляют коэффициенты частичной корреляции.

Формула частичного коэффициента корреляции между признаками Хi и Xjимеет вид:



где – алгебраические дополнения соответствующих элементов корреляционной матрицы.

Во время построения двухфакторной модели коэффициенты частичной корреляции рассчитываются по формулам:


Для проверки полученных коэффициентов рассчитаем их матричным методом по формуле:



где – элементы матрицы обратной корреляционной матрицы R.


Таблица 3 – Расчеты коэффициентов частичной корреляции

По определению

Матричный метод

ryx1 (x2)

-0,402981473


-0,402981473

ryx2 (x1)

0,781189003


0,781189003

rx1x2 (y)

-0,005029869


-0,005029869

Корреляционная матрица, R



Матрица, обратная корреляционной, C


y

x1

x2






y

1

-0,655601546

0,857139597

x1

-0,655601546

1

-0,565075617


Корреляционная матрица, R


Матрица, обратная корреляционной, C


y

x1

x2


y

1

-0,655601546

0,857139597


4,499910061

1,13212031

-3,2173175


x1

-0,655601546

1

-0,565075617

x2

0,857139597

-0,565075617

1


x1

-0,655601546

1

-0,565075617


1,132120315

1,75392563

0,02071546


x2

0,857139597

-0,565075617

1


1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

Xtrans=

38,8

39,9

30,1

31,7

17,2

39,7

36,9

38,2

40,1


114,0

101,1

153,8

146,0

124,8

103,6

119,0

108,7

106,5

x2

0,857139597

-0,565075617

1


-3,21731751

0,02071546

3,76939603



Значения коэффициентов, полученные двумя методами, совпали.

1.2.3 Выводы о том, являются ли факторы ведущими и возможной мультиколлнеарности

С помощью полученных корреляционной матрицы и коэффициентов частичной корреляции можно сделать выводы о значимости факторов и проверить факторы на мультиколлинеарность – линейную зависимость или сильную корреляцию.

1) Поскольку коэффициент парной корреляции между затратами оборота и рентабельностью rух1 = -0,655601546 и соответствующий коэффициент частичной корреляции ryx1 (х2) = – 0,402981473, это значит, что затраты оборота имеют обратное среднее влияние на рентабельность.

2) Поскольку коэффициент парной корреляции между трудоемкостью и рентабельностью rух2=0,857139597, а соответствующий коэффициент частичной корреляции rух2 (х1)= 0,781189003, то это свидетельствует о том, что трудоемкость существенно влияет на рентабельность.

3) Поскольку коэффициент парной корреляции между рентабельностью и затратами оборота = -0,565075617, а соответствующий коэффициент частичной корреляции rх1х2 (у) = -0,005029869 то можно сказать, что существует средняя обратная корреляционная зависимость.

3. Общий вид линейной двухфакторной модели и её оценка в матричной форме

В общем виде многофакторная линейная эконометрическая модель записывается так:



В матричной форме модель и ее оценка будут записаны в виде:


и ,


где У – вектор столбец наблюдаемых значений показателя;

У – вектор столбец оцененных значений фактора;

Х – матрица наблюдаемых значения факторов;

А – вектор столбец невидимых параметров;

А – вектор столбец оценок параметров модели;

е – вектор столбец остатков (отклонений).



2,32



1,0

38,8

114


2,19



1,0

39,9

101,1


2,83



1,0

30,1

153,8


2,75



1,0

31,7

146

Y=

2,59


X=

1,0

17,2

124,8


2,27



1,0

39,7

103,6


2,05



1,0

36,9

119


1,95



1,0

38,2

108,7


2,08



1,0

40,1

106,5



1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

Xtrans=

38,8

39,9

30,1

31,7

17,2

39,7

36,9

38,2


114,0

101,1

153,8

146,0

124,8

103,6

119,0

108,7


2. Оценка параметров модели 1МНК в матричной форме

Предположим, что все предпосылки классической регрессионной модели выполняются и осуществим оценку параметров модели по формуле:



Алгоритм вычисления параметров модели

  1. Вычисляем матрицу моментов Xt*X, но сначала найдем транспонированную матрицу Хt.


1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

Xtrans=

38,8

39,9

30,1

31,7

17,2

39,7

36,9

38,2

40,1


114,0

101,1

153,8

146,0

124,8

103,6

119,0

108,7

106,5

Xt*X


9

312,6

1077,5

312,6

11309,14

36788,2

1077,5

36788,24

131815


  1. Вычисляем матрицу ошибок


17,645098

-0,201192

-0,0881

-0,2011917

0,003254

0,00074

-0,0880866

0,000737

0,00052


3. Находим матрицу-произведение Xt*Y


21,03

717,965

2558,482


4. Вычисляем вектор оценок параметров модели как произведение матрицы на матрицу Xt*Y


По формуле






Регрессия коэффициенты

1,2597249

а0


У – пересечение



1,25972



-0,0106048

а1


Х1




-0,0106



0,012072

а2


Х2




0,01207




Таким образом, оценка эконометрической модели имеет вид

y=1,2597249–0,0106048+0,012072x2

3. Коэффициенты множественной детерминации и корреляции для оцененной модели

3.1 Расчет коэффициентов множественной детерминации и корреляции

Для оценки степени соответствия полученной модели наблюдаемым данным, то есть предварительной оценки адекватности модели, вычисляем коэффициенты множественной детерминации и множественной корреляции.

Коэффициент множественной корреляции является степень соответствия оцененной модели фактическим данным и рассчитывается как коэффициент корреляции между y и .

Квадрат коэффициента множественной корреляции называется коэффициентом множественной детерминации. Коэффициент множественной детерминации характеризует часть дисперсии показателя у, что объясняется регрессией, т.е. вариацией факторов, которые входят в модель:



Коэффициент множественной корреляции удобно рассчитывать как корень из коэффициента множественной детерминации, т.е.



Алгоритм вычисления коэффициентов множественной детерминации и корреляции:

1. Скопируем с итогового листа инструмента анализа Регрессия – Регрессия значения столбцов Предсказанное У и Остатки в таблицу 4.

2. Вычислим среднее значение у расчетного

3. В третий столбец введем формулу общих отклонений у-уср. и просчитаем ее для всех наблюдений.

4. Вычислим суммы квадратов общих отклонений и отклонений, которые не объясняются регрессией (остатков).

5. Вычислим коэффициент множественной детерминации .

6. Рассчитаем коэффициент множественной корреляции R.

7. Для проверки полученных коэффициентов скопируем с итогового листа Регрессия значения ячеек R-квадрат и Множественный R. Значения совпали.


Таблица 4 – Расчет коэффициентов и

Факт.

Предсказанное Y

Остатки

Y

Y-Y




2,48

2,22446

0,0955378

2,224462

-0,0167




2,62

2,05707

0,1329312

2,057069

-0,1467




2,88

2,79719

0,0328127

2,797187

0,4933

По формуле


Регрессия

2,68

2,68606

0,0639415

2,686058

0,4133


R-квадрат


2,52

2,5839

0,0060977

2,583902

0,2533

0,78


0,78

2,74

2,08937

0,1806303

2,08937

-0,0667


Коеф. мн. корреляций


2,56

2,30497

-0,254971

2,304971

-0,2867

0,88


0,88

2,68

2,16684

-0,2168438

2,166844

-0,3867




2,55

2,12014

-0,0401364

2,120136

-0,2567




2,3367

2,3367









0,17827


0,8022





3.2 Разложение коэффициента множественной детерминации на коэффициенты отдельной детерминации

Для определения доли влияния каждого фактора на показатель используют коэффициенты отдельной детерминации.

Коэффициентом отдельной детерминации для фактора называется произведение коэффициента корреляции между фактором и показателем У на стандартизованный параметр регрессии :

,


Сумма коэффициентов отдельной детерминации равняется коэффициенту множественной детерминации:



Во время анализа двухфакторной модели коэффициенты отдельной детерминации рассчитываются по формулам:



Теперь рассчитаем коэффициенты отдельной детерминации по этим формулам. Полученное значение совпало с тем, которое рассчитали ранее.


Таблица 5 – Расчет коэффициентов отдельной детерминации

d12

0,1649

d22

0,6128

R2

0,7778


3.3 Предварительные выводы об адекватности модели


С помощью полученных коэффициентов множественной детерминации, корреляции и отдельной детерминации можно сделать предварительные выводы об адекватности модели.

1) Поскольку коэффициент множественной детерминации R2 = 0,7778, то это свидетельствует про то, что вариация общих затрат на предприятиях на 77,78% определяется вариацией затрат оборота и трудоемкостью и на 22,22% вариацией показателей, которые не учитываются в модели.

2) Поскольку коэффициенты отдельной детерминации d1=0,1649, то это свидетельствует о том, что вариация общих затрат на предприятиях на 16,49% определяется вариацией затрат оборота

3) Коэффициент множественной корреляции R2 = 0,7778 характеризует сильную связь между общими затратами и факторами, которые их обуславливают.

4. Оценка дисперсионно – ковариационной матрицы оценок параметров модели

4.1 Оценка дисперсии отклонений

Вычислим оценку дисперсии отклонений по формуле


,


где – сумма квадратов отклонений;

n – количество наблюдений;

m – количество факторов модели.

Полученное значение проверим копированием с итогового листа Регрессии значение ячейки Остаток с таблицы дисперсийного анализа. Значения совпали.


Таблица 6 – Оценка дисперсии остатков

По формуле


Регрессия



MS

0,0297117

Остаток

0,0297117


4.2 Расчет дисперсии и ковариации оценок параметров модели

Для получения оценок ковариаций и дисперсий оценок параметров модели необходимо сложить ковариационную матрицу по формуле:



Таблица 7 – Оценка ковариационной матрицы оценок параметров модели


17,6451

-0,201192

-0,08809


0,5243

-0,006

-0,003

0,0297117

-0,20119

0,0032538

0,000737


-0,006

1E-04

2E-05


-0,08809

0,0007365

0,000522


-0,0026

2E-05

2E-05


Мы получили дисперсии оценок параметров модели, которые расположены по главной диагонали:


σ =

0,5243

σ =

1E-04

σ =

2E-05


4.3 Вычисление стандартных ошибок параметров и выводы о смещенности оценок параметров модели

Стандартные ошибки параметров модели рассчитаем по формуле , , . Для получения стандартной ошибки оценки параметров а0 введем формулу возведения в степень 0,5. И аналогично получим стандартные ошибки оценок параметров а1 и а2. Для проверки полученных ошибок скопируем с итогового листа Регрессия значения ячеек столбца Стандартная ошибка. Значения совпали.

Сравним каждую стандартную ошибку с соответствующим значением оценки параметра с помощью формулы:


Таблица 8 – Расчет стандартных ошибок оценок параметров модели. Выводы о смещении оценок параметров модели


Регрессия






По формуле

Стандартная ошибка


Выводы о смещённости оценок параметров модели


0,72406211

0,7240621


57,47779

Оценка смещена

0,00983242

0,0098324


-92,717

Оценка не смещена

0,00393854

0,0039385


32,62555

Оценка смещена


5. Проверка гипотез о статистической значимости оценок параметров модели на основе F- и t-критериев

5.1 Проверка адекватности модели по критерию Фишера

Проверку адекватности модели по критерию Фишера проведем по представленному алгоритму.

Шаг 1. Формулирование нулевой и альтернативной гипотез.

, т.е. не один фактор модели не влияет на показатель.

Хотя бы одно значение отменно от нуля, т.е.

Шаг 2. Выбор соответствующего уровня значимости.

Уровнем значимости называется вероятность сделать ошибку 1-го рода, т.е. отвергнуть правильную гипотезу. Величина называется уровнем доверия или доверительной вероятностью.

Выбираем уровень значимости , т.е. доверительная вероятность – Р=0,95

Шаг 3. Вычисление расчетного значения F-критерия.

Расчетное значение F-критерия определяется по формуле:



Для проверки полученного значения скопируем с итогового листа Регрессия расчетное значение F-критерия. Значения совпали

Шаг 4. Определение по статистическим таблицам F-распределения Фишера критического значения F-критерия.

Критическое значение F-критерия находим по статистическим таблицам F-распределения Фишера по соответствующим данным:

  • доверительной вероятности Р=0,95;

  • степеней свободы

Определяем табличное значение критерия =5,14

Шаг 5. Сравнение рассчетного значения F-критерия с критическим и интерпритация результатов.

Вывод о принятии нулевой гипотезы, т.е. об адекватности модели делаем с помощью встроенной логической функции ЕСЛИ.

Поскольку , то отвергаем нулевую гипотезу про незначимость факторов с риском ошибиться не больше чем на 5% случаев, т.е. с надежностью Р=0,95 можно считать, что принятая модель адекватна статистическим данным и на основе этой модели можно осуществлять экономический анализ и прогнозирование.

5.2 Проверка значимости оценок параметров модели по критерию Стьюдента

Проверку гипотезы о значении каждого параметра модели проведем в соответствии с представленным алгоритмом.

Шаг 1. Формулирование нулевой и альтернативной гипотез.

– оценка j-го параметра является статистически незначимой, т.е. j-й фактор никак не влияет на показатель у;

– оценка j-го параметра является статистически значимой, т.е. j-й фактор влияет на показатель у.

Шаг 2. Выбор соответствующего уровня значимости.

Выбираем уровень значимости , т.е. доверительная вероятность – Р=0,95.

Шаг 3. Вычисление расчетного значения t-критерия.

Расчетное значение t-критерия определяется по формуле:



Во время анализа двухфакторной модели расчетные значения t-критерия определяются по формулам:


=-3,2333 =3,4264 =4,9937


Для проверки полученного значения t-критерия скопируем с итогового листа Регрессия значения ячеек столбца t-статистика. Значения совпали.

Шаг 4. Определение по статистическим таблицам t-распределения Стьюдента критического значения t-критерия.

Критическое значение t-критерия находим по статистическим таблицам t-распределения Стьюдента по соответствующим данным:

  • доверительной вероятности Р=0,95;

  • степеней свободы

Определяем табличное значение критерия =2,45

Шаг 5. Сравнение рассчетного значения t-критерия с критическим и интерпритация результатов.

Выводы о принятии нулевой гипотезы, т.е. о значимости оценок параметров , и делаем с помощью встроенной логической функции ЕСЛИ. С надежностью Р=0,95 можно считать, что

– оценки 1-го и 2-го параметров модели значимые, т.е. оба фактора существенно влияют на показатель;

– оценка 0-го параметра модели не является статистически значимой.


Таблица 9 – Проверка гипотез о статистической значимости оценок параметров модели на основе F- и t – критериев



F-критерий Фишера


По формуле


Регресия

Р=0.95



F

2,45

10,4997302


10,499730

Модель адекватна




t-критерий Стьюдента



По формуле


Регресия


Р=0.95



t-статистика


5,14

1,73980232


1,739802

а0

Параметр не значимый

-1,0785514


-1,07855

а1

Параметр не значимый

3,06508252


3,06508

а2

Параметр не значимый


6. Построение интервалов доверия для параметров модели.

Интервалом доверия называется интервал, который содержит неизвестный параметр с заданным уровнем доверия.

Интервалы доверия для параметров находим аналогично процедуре тестирования нулевой гипотезы по t-критерию Стьюдента:

– выбираем уровнем значимости =0,05 и соответственно уровень доверия будет составлять – Р=0,95;

– для каждого параметра вычисляем нижнюю и верхнюю границы интервала доверия по формуле, при этом делаем абсолютную ссылку на табличное значение t-критерия :



где - стандартная ошибка параметров модели

Для проверки полученных значений границ скопируем с итогового листа Регрессия значения ячеек столбцов Нижнее 95% и Верхнее 95%. Значения совпали.


Таблица 10 – Доверительные интервалы для оценок параметров

По формуле


Регресия


Нижние 95%

Верхние 95%

Нижние 95%

Верхние 95%

-0,5119912

3,031441

-0,511991215

3,031441101

-0,3466383

0,013454

-0,034663831

0,013454293

0,00243469

0,021709

0,00243469

0,02170921


Исходя из этого, 95% интервалы доверия для параметров модели имеют вид:

-0,5119912≤а0≤3,031441

-0,3466383≤а1≤0,013454

0,00243469≤а2≤0,021709


7. Расчет прогнозного значения рентабельности на основании оцененной модели

Так как оцененная модель является адекватной статистическим данным, то на основании этой модели можно осуществлять прогнозирование рентабельности для одного из предприятий объединения, деятельность которого исследовалась.

7.1 Точечный прогноз рентабельности

Сделаем точечный прогноз рентабельности для одного из предприятий при условии того, что затраты оборота составят 7 г.о. и трудоемкость – 50 г.о., т.е. , по формуле:



Хр





1

16

100

1,25972494





-0,01060477

2,297243652




0,01207195



7.2 Доверительный интервал для прогноза математического ожидания рентабельности

Рассчитаем значения верхней и нижней границ прогнозного интервала, используя табл. значения критерия Стьюдента 2,45, по формуле:


Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: