Разработка системы удобрения в хозяйстве
Недостаток магния отражается на внешнем виде листьев растений: наблюдается частичный хлороз, появляются бесцветные участки листьев (мраморовидность). Магний более подвижен в растениях, чем кальций, и может повторно использоваться в них — передвигаться из старых листьев в молодые, тогда как кальций этой способностью не обладает и содержится больше в старых листьях, чем в молодых.
Количественно потребность растений в магнии невелика. В зависимости от величины урожая различные культуры выносят от 10 до 70кг MgO с 1 га.
Эффективность известкования
По данным многочисленных полевых опытов, средние прибавки урожайности основной продукции сельскохозяйственных культур от известкования почвы составляют (в ц на 1 га): яровых зерновых культур и озимой ржи 2—5, озимой пшеницы 3—7, кормовой свеклы и кормовой капусты 40—100, клевера (сено) 10—15, кукурузы на силос зеленой массы 50—75, картофеля 15, льна (соломы) 2—3, столовой свеклы и капусты 30—80.
Следует сказать, что прибавки сильно колеблются в зависимости от степени кислотности почвы, дозы извести и биологических особенностей возделываемых культур. По данным ВИУА (Дудина Н.Х.,1991), за ротацию 6—8-польного севооборота 1 т СаСО3 обеспечивает прибавку урожайности сельскохозяйственных культур около 6—8 ц зерновых единиц на 1 га. Аналогичные данные приводятся в «Кратком справочнике по удобрениям»: за 6—8-летний период действия извести каждая ее тонна дает б—7 ц кормовых единиц с 1 га.
Особенно высокую эффективность дает известь при внесении ее под культуры, чувствительные к кислотности почвы, например под клевер.
По данным кафедры агрохимии Пермской СХА, каждая тонна CaCO3, внесенная под покровную для клевера культуру (яровую пшеницу), дала прибавку урожайности клеверного сена (за 2 года пользования) 10 ц. Кроме того, на 2 ц повысилась урожайность зерна покровной культуры.
Продолжительность действия извести зависит от дозы. В опытах Соликамской опытной станции на легких почвах действие извести в дозах 4 и 6 т СаСО3 на 1 га наблюдалось в течение 20 лет. В опытах на Менделеевском опытном поле на тяжелосуглинистой дерново-подзолистой почве при внесении в 1930 г. извести в дозе 8 т на 1 га (по 0,5 гидролитической кислотности) ее положительное действие сказывалось на протяжении четырех ротаций семипольного севооборота.
При этом каждая тонна внесенной извести оплачена прибавкой урожайности за первые две ротации севооборота 5 ц кормовых единиц, а за четыре ротации — почти 9 ц.
Таким образом, известкование дерново-подзолистых почв в нормальных дозах (по 0,5 Нг) следует считать коренным приемом химической мелиорации этих почв, обеспечивающим повышение урожайности всех сельскохозяйственных культур.
Известкование и эффективность минеральных удобрений
Известкование - не только коренной прием химической мелиорации кислых почв, но и средство повышения эффективности минеральных удобрений. На сильнокислых почвах минеральные удобрения не дают должной эффективности, тогда как на слабокислых оказывают высокое действие.
Особое значение имеет известкование при систематическом применении физиологически кислых минеральных удобрений и особенно на слабобуферных песчаных и супесчаных почвах. В этом отношении можно назвать классическими опыты Соликамской опытной станции. В опытах, где минеральные удобрения (NPK) вносили систематически длительное время, на неизвесткованных делянках они не дали эффекта, а на известкованных обеспечили высокие прибавки урожая от тех же удобрений. При систематическом применении физиологически кислых минеральных удобрений, несмотря на посев и чередование культур в условиях севооборота и соблюдение всех других агротехнических приемов на песчаных почвах, образовались (через 12—15 лет) «мертвые» пятна (лишенные растений). Основная причина их появления — повышенная кислотность и содержание активного алюминия, повышенная концентрация солей. В меньшей степени, но это может проявиться и на более тяжелых по механическому составу кислых дерново-подзолистых почвах. Основная мера борьбы с этими нежелательными последствиями — известкование почв в дозах, обеспечивающих поддержание слабокислой реакции. Если известкование проводится недостаточными дозами, то при внесении физиологически кислых удобрений почва снова подкисляется. Поэтому рекомендуется или повышать дозы основного известкования, или добавлять к физиологически кислым удобрениям нейтрализующие вещества, например молотый известняк (СаСО3), в следующих количествах (в ц на 1 ц удобрения): серно-кислого аммония 1,25, хлористого аммония 1,4, аммиачной селитры 0,75, мочевины 1,2, суперфосфата 0,1.
Установление необходимости известкования
При определении необходимости известкования за основу берутся агрохимические картограммы кислотности почв, составленные агрохимическими лабораториями. На них, как правило, приводятся значения рН для каждого участка с указанием рекомендуемой дозы извести. Таким образом, в настоящее время основным показателем для установления необходимости известкования является величина рН солевой хлор-калиевой вытяжки. В изложении о кислотности почв было отмечено, что предельной величиной рН является 5,5, ниже которой почвы подлежат известкованию. В отдельных случаях в зависимости от биологических особенностей возделываемых культур (их отношение к кислотности почвы) допускается известкование и при более высоком значении рН (до5,6—5,8), но это касается главным образом тех районов, где известкованием уже доведена реакция почвы до 5,5. Учитывая, что на преобладающем большинстве дерново-подзолистых почв рН еще не доведен до этого уровня, в настоящее время принято известковать почвы, имеющие рН до 5,5. Но и в этом интервале рН могут быть почвы с рН 5,0; 4,5 и еще ниже (до рН 4,0). Поэтому, естественно, должна быть установлена определенная очередность известкования. В первую очередь необходимо известковать почвы сильно- и среднеподзолистые при возделывании на них культур, более чувствительных к кислотности, например люцерны, клевера и других в полевых севооборотах, некоторых культур в овощных севооборотах, а также перед закладкой на кислых почвах культурных лугов и пастбищ.
По исследованиям Авдонина и других ученых, наличие в севообороте посевов льна и картофеля не может служить препятствием для известкования кислых почв в обычных дозах, и опасность отрицательного влияния извести на эти культуры (считавшиеся ранее кальциефобами) преувеличена. Наблюдавшееся иногда снижение качества льна и картофеля при внесении повышенных доз извести объясняется не результатом изменения реакции среды и повышения количества кальция в почве и растении, а некоторым ухудшением при известковании питания указанных растений магнием, бором и калием. Применение под эти культуры повышенных доз калийных удобрений, рекомендуемых доз борных, магниевых удобрений, а также навоза (улучшающего питание этими элементами) будет снимать полностью не только отрицательное влияние извести, но и обеспечит положительное действие ее на урожай этих культур без снижения его качества. Поэтому рекомендуется применять в севооборотах со льном и картофелем известкование в тех же дозах, что и в севооборотах без этих культур, то есть примерно по 0,5—0,75 Нг на легких почвах и по 0,75—1,0 Нг на суглинистых без ущерба для урожая и его качества.
Таблица 3 – Расчёт доз извести
№ поля |
Тип почвы, ГМС |
Доза СаСО3, т/га | Доза известкового материала, т/га | ||
Рекомендуемая | На сдвиг реакции | по Нг | |||
1 |
Дерново- подзолистая, среднесуглинистая |
8 | 4,75 | 7,5 | 1,87 |
2 | 6 | 5,7 | 7,35 | 1,82 | |
3 | 6 | 6,65 | 7,2 | 1,8 | |
4 | 6 | 7,6 | 7,05 | 1,76 | |
5 | 6 | 8,95 | 6,9 | 1,72 | |
6 | 6 | 4 | 6,75 | 1,68 | |
7 | 4 | 4,8 | 6,6 | 2,47 | |
8 | 4 | 5,6 | 6,45 | 2,4 | |
Всего за севооборот | 15,52 |
В данном севообороте проводится основное известкование. Расчёт доз известкового материала производим по гидролитической кислотности, т.к. имеем довольно тяжёлые почвы по ГМС, низкие показатели рН и суммы обменных оснований, но высокую гидролитическую кислотность.
Для известкования применяем доломитовую муку, которая имеет следующие характеристики: влажность 6%, частиц > 1мм 15%, нейтрализующая способность 105% (данные по ТУ46-6-77).
Весной 2009 года известкование проводим на 2 поле под культивацию,
когда почва достигла физической спелости, перед посевом озимой ржи. Вносим разбрасыванием по поверхности поля доломитовую муку РУП-10 агрегатируемый с Т-150К.
2.2 Фосфоритование
Фосфор играет важную роль в жизни растений. Большинство процессов обмена веществ осуществляется только при его участии, входит в состав органических соединений активно участвующих в метаболизме растений. Фосфор находится всегда во втором минимуме после азота.
Фосфоритная мука используется для улучшения плодородия почв, а именно повышения содержания подвижного фосфора. В таком случае применяются высокие дозы фосфоритной муки от 1-3 т/га, которые устанавливаются в зависимости от кислотности почвы и содержания фосфора. Этот важнейший мелиоративный приём – ФОСФОРИТОВАНИЕ.
Фосфоритная мука как непосредственное удобрение
Эффективность фосфоритной муки зависит от степени ее растворимости, тонины размола, свойств почв и растений, сопутствующих удобрений и других условий.
Несмотря на то, что в целом фосфориты относят к группе трудно растворимых фосфатов, они (вследствие разного происхождения, минералогического состава и строения) различаются по степени растворимости и усвояемости растениями. Вятские, егорьевские, брянские, щигровские, кинешемские, изюмские, кролевецкие фосфориты после размола пригодны для непосредственного удобрения. Кара-таусские, уральские, подольские фосфориты, как и апатиты, непосредственно применять в качестве удобрения нецелесообразно: они крайне трудно растворяются в воде и не усваиваются растениями.
Большую роль в повышении эффективности фосфоритной муки играет тонина помола. По стандарту фосфоритная мука не должна иметь частиц крупнее 1 мм; частиц крупнее 0,4 мм должно быть не больше 5%; частиц крупнее 0,18 мм — не более 20% (не менее 80% всей фосфоритной муки должно проходить через сито с отверстиями диаметром 0,18 мм).
По содержанию фосфора фосфоритная мука подразделяется на высший сорт (не менее 25% Р2О5), 1-й сорт (не менее 22%) и 2-й сорт (не менее 19% Р2О5).
Фосфоритную муку следует вносить, прежде всего, в кислые почвы. Она постепенно разлагается, образует более растворимые и доступные для растений соединения:
Са3(РО4)2+2Н2СО3 → 2СаНРО4+Са(НСО3)2
Са3(РО4)2+ (почва) 2Н+ → 2СаНРО4 + (почва) Са+2.
За счет азотной кислоты, образующейся в результате нитрификации, также может происходить растворение фосфоритной муки:
Са3(РО4)2 +2НNO3 → 2CaHPO4 + Ca(NO3)2
Образующийся во всех реакциях полурастворимый фосфат кальция — СаНРО4 — может превратиться в еще более растворимое соединение — монофосфат кальция — Са(Н2РО4)2 .Обе эти соли растениям доступны.
Чем выше
кислотность
почвы, тем лучше
растворяется
фосфоритная
мука; при этом
не только в
условиях актуальной
и обменной
кислотности,
но и гидролитической.
По данным
проф. Б. А. Голубева
(Дудина Н.Х.,1991),
действие фосфоритной
муки начинает
заметно проявляться
при гидролитической
кислотности:
выше 2,5 м.-экв.
на 100 г почвы.
С дальнейшим
повышением
гидролитической
кислотности
растворимость
фосфоритной:
муки
и ее действие
повышаются.
Этим же исследователем
была установлена
зависимость
действия фосфоритной
муки от
емкости
поглощения
почвы: с увеличением
емкости поглощения
при одной и той
же гидролитической
кислотности
действие фосфоритной
муки ослабляется.
Наилучшее действие фосфоритная мука проявляет на почвах, имеющих одновременно высокую гидролитическую кислотность и небольшую ёмкость поглощения. При гидролитической кислотности, выраженной в миллиэквивалентах и равной 3 + 0,1 емкости поглощения и более, действие фосфоритной муки будет не ниже суперфосфата. Зная степень гидролитической кислотности почвы и емкость поглощения, можно предвидеть действие фосфоритной муки. На 1 поле гидролитическая кислотность 6,4, а ёмкость поглощения 16,4.Эффект от применения фосфоритной муки будет не ниже, чем от суперфосфата.
По величинам гидролитической кислотности и емкости поглощения можно также вычислить коэффициент насыщенности почв основаниями (V%). При V=75—80% применение фосфоритной муки малоцелесообразно; при V=75—50% ниже фосфоритная мука будет действовать хорошо (60% насыщенность почв основаниями на 1 поле).
Если нет данных о гидролитической кислотности и емкости поглощения, то можно ориентировочно пользоваться показателями рН солевой вытяжки аналогично определению нуждаемости почв в извести: чем кислее почва, тем вероятнее хорошее действие фосфоритной муки.
Опытами Д. Н. Прянишникова еще в конце прошлого столетия было установлено, что разные растения неодинаково реагируют на внесение фосфоритной муки: одни используют ее хорошо, другие – слабо. Большинство растений может использовать фосфоритную муку только при соответствующей, кислотности почвы. К этой группе относят все злаки, лен, свеклу — картофель; из бобовых — горох, бобы, вику, клевер. При этом озимая рожь, клевер и горох усваивают фосфоритную муку несколько лучше, чем остальные культуры.
Другая группа растений может усваивать фосфоритную муку при нейтральной реакции среды; сюда относятся люпин, гречиха, эспарцет, горчица. Эти растения обладают также и повышенной Способностью усваивать фосфор из почвы.
Исследованиями Ф. В. Чирикова установлена зависимость, действия фосфоритной муки от количественного соотношения в растении кальция и фосфора (СаО : Р2О5). Растения, у которых это отношение более 1,3, усваивают фосфоритную муку; имеющие отношение меньше 1,3 — не усваивают. Д. Н. Прянишников и М. К. Домонтович установили также, что злаковые растения, посеянные в смеси с люпином, усваивают фосфоритную муку лучше.
Внесение фосфоритной муки вместе с физиологически кислыми удобрениями (например, сульфатом аммония) повышает ее действие.
Вносить фосфоритную муку вместе с известью совершенно, нецелесообразно, так как известь будет задерживать ее растворение. Фосфоритная мука содержит углекислый кальций, и сама по себе оказывает некоторое нейтрализующее действие на кислотность почвы. Но использование ее в качестве удобрения не снимает необходимости известкования почвы. Если в почву намечено внести и фосфоритную муку и известь, то фосфоритную муку следует вносить осенью под зяблевую вспашку, а известь — весной под культивацию. На почвах, произвесткованных полной дозой извести, а также на сильно унавоженных применение фосфоритной муки нецелесообразно.
Повысить удобрительное действие фосфоритной муки можно путем компостирования ее с навозом (10—20 кг муки на тонну навоза). В процессе созревания компоста фосфоритная мука перейдет в более растворимые соединения в результате микробиологических процессов.
При правильном применении фосфоритная мука оказывает высокое положительное влияние на урожай, часто не уступающее (на кислых почвах) действию суперфосфата.
Фосфоритная мука обладает значительным последействием, продолжительность которого зависит от дозы удобрения. По данным Долгопрудной опытной станции, дозы фосфоритной муки, начиная со 135 кг Р2О5 на гектар, обеспечивали заметные прибавки на протяжении 12—15 лет, а иногда и дольше.
Фосфоритная мука — самое дешевое фосфорное удобрение, и на почвах Предуралья она должна найти самое широкое применение. Для фосфоритования используем фосфоритную муку высшего сорта с содержанием Р2О5 > 23 % и влажностью не более 1,5 % (ГОСТ 5716-74). Фосфор вносим осенью 2009 года на 2 поле под плуг перед вспашкой под зябь, для того чтобы удобрения попали в более нижние слои почвы с относительно стабильными условиями увлажнения, обеспечивающими бесперебойное питание растений, фосфоритование необходимо проводить на кислых почвах, т.е. до известкования. Используем, как и при известковании РУП-10 с Т-150К.
Таблица 4 – Расчёт доз фосфоритной муки
№ поля |
Тип почвы, ГМС |
Исходное содержание Р2О5, мг/кг | Планируемое содержание Р2О5, мг/кг | Норма Р2О5 для повышения содержания Р2О5 на 10 мг/кг, кг/га | Доза Р2О5 кг/га | Доза фосфоритной муки т/га |
1 |
Дерново- подзолистая, среднесуглинистая |
67 | 150 | 70 | 581 | 2,0 |
2 | 67,2 | 150 | 70 | 579,6 | 1,99 | |
3 | 67,5 | 150 | 70 | 577,5 | 1,99 | |
4 | 67,9 | 150 | 70 | 574,7 | 1,98 | |
5 | 68 | 150 | 70 | 574 | 1,98 | |
6 | 68,2 | 150 | 70 | 572,6 | 1,97 | |
7 | 69 | 150 | 70 | 567 | 1,95 | |
8 | 70 | 150 | 70 | 560 | 1,93 | |
Всего за севооборот | 15,79 |
2.3 Обеспечение бездефицитного баланса гумуса
Баланс гумуса представляет собой разницу между выходом гумуса из ПКО и минерализации гумуса. С падением содержания гумуса в почвах разных регионов страны он приобретает всё большую актуальность. Содержание и динамика гумуса в почвах зависят от почвенно-климатических условий, структура посевных площадей, интенсивности обработки почв, количества и качества применяемых удобрений и мелиорантов. Во всех почвенно-климатических зонах максимальные потери гумуса в результате эрозии и минерализации происходят в парующей почве, затем под пропашными культурами, ещё меньше под зерновыми культурами и минимальные под многолетними травами. Удобрения, повышая продуктивность культур, увеличивают и количество корневых и пожнивных остатков их, а следовательно, возврат органического вещества пожнивными остатками и с органическими удобрениями. Органические удобрения, непосредственно пополняя запасы органического вещества, способны при определённых дозах (насыщенности) на разных почвах поддерживать бездефицитный баланс гумуса.
Таблица 5 – Баланс гумуса в севообороте
№ поля | Культура | Урожайность, т/га | Минерализация гумуса, т/га | Коэффициент выхода ПКО | Выход ПКО, т/га | Коэффициент гумификации | Выход гумуса из ПКО, т/га | Баланс гумуса, т/га |
1 | Горох-овсяная смесь на зеленый корм | 7 | 1 | 1 | 7 | 0,18 | 1,26 | 0,96 |
2 | Озимая рожь | 1,07 | 1 | 1,2 | 1,3 | 0,15 | 1,19 | 0,19 |
3 | Пшеница+люцерна | 1,12 | 1 | 1 | 1,12 | 0,15 | 0,19 | -0,81 |
4 | Люцерна 1 г.п. | 1,14 | 0,3 | 1,5 | 1,71 | 0,18 | 0,31 | 0,01 |
5 | Люцерна 2 г.п. | 1,4 | 0,3 | 1,5 | 2,1 | 0,18 | 0,378 | 0,08 |
6 | Гречиха | 2,4 | 1 | 2 | 4,8 | 0,15 | 0,72 | - 0,28 |
7 | Картофель | 10,3 | 1,5 | 0,1 | 1,03 | 0,12 | 0,12 | -1,38 |
8 | Картофель | 10,3 | 1,5 | 0,1 | 1,03 | 0,12 | 0,12 | -1,38 |
Всего за севооборот | -2,61 |
Доза ОУ, т/севооборот = 59,32
Насыщенность ОУ, т/га = 7,41
Так как насыщенность ОУ больше среднерекомендуемой, то для дальнейших расчётов берутся среднерекомендуемые значения.
Навоз подстилочный
В зависимости от содержания влаги навоз подразделяют на три вида: твердый – подстилочный (влажность 75 – 80%), полужидкий (влажность до 90%) и жидкий (влажность свыше 90%).
Навоз является основным органическим удобрением. Он содержит все элементы питания, необходимые для растения: азот, фосфор, калий, кальций, магний, серу, а также микроэлементы – железо, бор, цинк, медь, молибден, марганец, кобальт (Дудина Н.Х.,1991). Под влиянием навоза и других органических удобрений улучшаются физико-химические свойства почвы, ее водный и воздушный режим, уменьшается вредное действие почвенной кислотности на рост растений и жизнедеятельность микроорганизмов. Важное значение имеют органические удобрения как источник СО2 для растений. Кроме того, в навозе содержатся различные ростовые вещества (типа ауксина, гетероауксина, гиббереллина и т. п.), которые способствуют росту и развитию растений. При систематическом внесении органических удобрений улучшается плодородие почвы.
Органические удобрения создают условия для более эффективного использования растениями минеральных удобрений.
Навоз оказывает большое влияние на повышение урожаев сельскохозяйственных культур во всех зонах. В общем балансе вносимых в почву элементов питания на долю органических удобрений приходится около 35 – 40 %.
Таким образом, несмотря на непрерывно расширяющееся производство минеральных удобрений, навоз является важнейшим источником питательных веществ для растений. Д. Н. Прянишников писал: «Как бы ни было велико производство минеральных удобрений в стране, навоз никогда не потеряет своего значения как одно из главнейших удобрений в сельском хозяйстве».
Особенно велика роль навоза и других органических удобрений в районах Нечерноземной зоны. Почвы этой зоны бедны гумусом, содержат мало питательных веществ, доступных растениям. Без систематического применения органических удобрений на таких почвах, особенно песчаных и супесчаных, трудно получать высокие и устойчивые урожаи.
Состав навоза. Навоз представляет собой твердые и жидкие выделения животных, смешанные с подстилкой (Кореньков Д.А.,1982). Сухое вещество твердых выделений составляет примерно половину сухого вещества корма. Качество навоза зависит от состава корма, вида животных, способа накопления и хранения навоза. Средний химический состав навоза: N – 0,5 %, Р2О5 – 0,25%, К2О – 0,6%.
Состав навоза сильно изменяется в зависимости от соотношения в нем твердых и жидких выделений животных. Основная масса калия находится в жидких выделениях. Фосфор содержится преимущественно в твердых выделениях, азот – в жидких и твердых. Изменяется состав навоза и в зависимости от качества корма. Чем богаче корм белком, тем больше в навозе азота; чем водянистее корм, тем больше в нем калия. Состав навоза зависит также от вида животных. Конский навоз богаче азотом и отчасти фосфором, чем навоз крупного рогатого скота и свиней.
Состав навоза сильно меняется в зависимости от количества и качества подстилки.
Для подстилки используют различные материалы: солому, торф, опилки и пр. По способности поглощать и удерживать жидкие выделения и газы первое место занимает моховой торф. Солома озимых и яровых хлебов – также хороший подстилочный материал. Для лучшего поглощения жидких выделений солому используют на подстилку в виде резки длиной 10 – 15 см. Правильное применение подстилки способствует получению большего количества хорошего навоза. При этом торфяной навоз будет более высокого качества, так как по содержанию азота торф превосходит солому.
Так, в соломе в среднем содержится 0,5 – 0,6% N, а в разных торфах содержание азота колеблется от 0,8 до 2,25%.
Древесные
опилки – менее
ценный вид
подстилки. Они
поглощают
значительно
меньше жидкости,
чем торф; в них
мало азота,
а
главное много
клетчатки, и
она медленно
разлагается
в почве.
Такой
навоз можно
применять
только в овощеводстве
закрытого
грунта
с последующим
(через год-два)
использованием
его в качестве
удобрения на
полях.
Суточная норма подстилки для крупного рогатого скота — от 4 до 6 кг, лошади — 3 – 4, свиней 2 – 3, для овцы— 0,1 – 1 кг.
Выход навоза. Количество навоза зависит от вида животных, количества и качества кормов, применяемой подстилки, а также от продолжительности стойлового периода.
Количество навоза (Н), получаемого в хозяйстве, можно подсчитать по формуле:
Н = (0,5*К + П)*4,
где К — сухое вещество корма; П — количество подстилки; 4 — коэффициент (масса сырого навоза примерно в 4 раза больше, чем масса сухого вещества корма; в навозе 75% воды).
Общее количество навоза, получаемого в хозяйстве, можно подсчитать, также пользуясь примерными данными о выходе навоза на одну голову скота в год с учетом потерь при работе и на пастбище. Принято считать, что при продолжительности стойлового периода 220 – 240 дней от крупного рогатого скота можно получить 8 – 10 т, от молодняка до двух лет — 4 – 5, от лошадей — 6 – 7, от свиней — 1,5 – 2, от овец — 0,8 – 0,9 т навоза на одну голову.
Для определения количества навоза в штабелях необходимо объем штабеля (в м3) умножить на массу 1 м3 навоза. Масса 1м3 навоза без уплотнения (свежего) — 300 – 400кг, в уплотненном состоянии — 700, полуперепревшего — 800 и сильноразложившегося — 900 кг.
Количество и качество навоза зависят от способа хранения.
При рыхлой укладке навоз через 3 – 4 мес. может потерять 0,3 – 0,2 сухого вещества, при плотной укладке потери уменьшаются до 0,11 – 0,1.
Способы хранения. Применяются несколько способов хранения навоза: рыхлая укладка, рыхло-плотная и плотная укладка (холодный способ).
Установлено, что наиболее рациональным способом является плотное (или холодное) хранение навоза (Дудина Н.Х.,1991). При этом способе навоз после удаления из животноводческого помещения укладывают (вблизи фермы или на поле) в большие уплотненные штабеля шириной не менее 5 – 6 м и высотой в уплотненном состоянии до 2 – 2,5.
Оптимальная
масса штабеля
для хранения
в зимнее время
на поле
100 – 200 т
(при массе менее
100 т штабель сильнее
промерзает,
а
более 200 т
существенно
снижается
производительность
навозоразбрасывателей).
При хранении
навоза в уплотненных
штабелях из
него меньше
теряется азота
и органического
вещества. При
хранении навоза
в нем происходят
различные
изменения,
вызываемые
микроорганизмами.
Прежде всего,
разрушаются
мочевина и
другие азотистые
органические
вещества,
содержащиеся
в жидких выделениях
животных. Мочевина
превращается
в углекислый
аммоний с последующим
образованием
аммиака, углекислоты
и воды:
CO(NH2)2 + 2Н2О = (NH4)2CO3;
(NH4)2CO3 = 2NH3+CO2 + H2O.
Медленнее (но также в конечном итоге с образованием аммиака) разрушаются и другие азотные соединения: гиппуровая и мочевая кислоты.
Азотистые соединения твердых выделений и подстилки, главным образом белок, также разлагаются с образованием аммиака, но очень медленно, потому что при большом количестве углеродистых соединений образующийся аммиак полностью используется микроорганизмами.
Аммиак — очень нестойкое соединение. Если не создать условий для его поглощения торфом, землей, минеральными добавками, то из навоза будет теряться большое количество азота. Поэтому во всех районах страны подстилочный навоз надо хранить в уплотненном состоянии, как в навозохранилищах, так и на поле. Для сокращения потерь азота штабеля навоза следует покрывать небольшим слоем торфа или дерновой земли (5 – 10 см), но количество земли или торфа при этом не должно превышать 20% массы навоза. При таком хранении даже в жаркую погоду в навозе полностью сохраняется аммиачный азот, так как он находится в поглощенном состоянии.
Совершенно недопустимо хранение навоза в мелких кучах. При таком хранении улетучивается почти весь аммиачный азот, а другие питательные вещества вымываются талыми водами и дождями. Навоз в мелких кучах промерзает, не разлагается, семена сорняков в нем не теряют всхожести. Почва под кучами долго не оттаивает, что задерживает своевременную обработку ее весной. Удобрительное действие такого навоза очень низкое.
Потери азота при хранении навоза уменьшаются при компостировании его с фосфорными удобрениями. Для этого особенно целесообразно использовать фосфоритную муку. Под влиянием угольной кислоты и органических кислот, образующихся при разложении навоза, фосфоритная мука превращается в более доступные для растений формы — двухзамещенный и однозамещенный фосфат кальция:
Са3(РО4)2 + 2Н2СО3 = 2CaHРО4 + Са(НСО3)2
или Са3(РО4)2 + 2Н2СО3= Ca(H3РО4)3 + 2Са(НСО3)2.
Одновременно происходит связывание аммиака фосфорной кислотой с образованием фосфорно-аммонийной соли — аммофоса:
Н3РО4 + NH3 → NH4H2PO4
При добавлении фосфоритной муки к навозу потери уменьшаются в несколько раз, ценность навоза возрастает. Потери азота из навоза при его хранении без фосфоритной муки составляют около 20%, а при хранении с фосфоритной мукой — только 2 – 3%. Обычно рекомендуется добавлять фосфоритную муку к навозу в количестве 2 – 5% его массы. При этом необходимо, чтобы фосфоритная мука равномерно распределялась в массе навоза. Фосфоритную муку можно добавлять к навозу на скотных дворах или при укладке штабеля на поле. Чем дольше взаимодействие фосфорных удобрений c навозом, чем лучше они перемешаны, тем выше эффективность того приема.
При рыхлом хранении навоза в процессе его разложения происходят потери не только азота, но и фосфора. При плотном хранении в течение четырех месяцев потерь почти нет. Калий при хранении навоза почти не теряется.
Из безазотистых веществ в навозе содержится довольно много клетчатки (30 – 36%) и пентозанов (14 – 16%) в пересчете на сухое вещество. При разложении навоза значительное количество органического вещества, в том числе клетчатка, и пентозаны разрушаются. В аэробных условиях клетчатка распадается на углекислоту и воду:
С6Н12О5 + 6О2 = 6С02 + 5Н2О
При анаэробном разложении клетчатки (без доступа кислорода воздуха) обрадуются CО2 и СН4 (метан):
С6Н12О5 + Н2О = 3СН4 + 3СО2
В результате выделения СО2, NH3, Н2О масса навоза при хранении уменьшается.
По степени разложения различают навоз свежий, слаборазложившийся (солома в нем почти сохраняет цвет и прочность), полуперепревший (солома темно-коричневого цвета, легко разрывается) и перепревший навоз, представляющий собой однородную мажущуюся массу; перегной — рыхлая землистая масса.
Не следует доводить навоз до перепревшего состояния или перегноя. При длительном разложении навоза количество органического вещества уменьшается в 2—3 раза.
Таблица 6 – Накопление органических удобрений в хозяйстве
Вид скота | Количество голов | Примерная норма выхода с 1 головы | Выход навоза | Выход навозной жижи |
Лошади | 70 | 5 | 350 | 52,5 |
КРС | 469 | 8 | 3752 | 562,8 |
Всего органических удобрений | 4717,3 |
Таблица 7 – Баланс органических удобрений
Севооборот | Площадь севооборота, га | Рекомендуемая насыщенность органическими удобрениями, т/га | Требуется органических удобрений согласно насыщенности | Наличие органических удобрений в хозяйстве, т | Недостающее количество органических удобрений, т |
Полевой | 1360 | 6 | 8160 | ||
Кормовой | 680 | 6 | 4080 | ||
Итого | 1224 | 4717,3 | 7522,7 |
Таблица 8 – Приготовление компостов
Вид компоста | Соотношение компостируемых материалов | Компостируемый материал | Всего | |||
навоз | торф | навозная жижа | Рф | |||
Торфонавозный | 1 : 1,53 | 4102 | 5676,8 | - | - | 9778,8 |
Торфожижевой | 1 : 3 | - | 1845,9 | 615,3 | 12,3 | 1858,2 |
Всего компостов | 11637 |
Торфяные компосты. Торф целесообразно компостировать с биологически активными органическими удобрениями: навозом, жижей, фекалиями, зеленым удобрением и др.