Xreferat.com » Рефераты по географии » Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

за последние 1000 лет. Изменения климатических условий за последние десятилетия оказывают значительное влияние на динамику экосистем.

Рассмотрим, как данные изменения повлияли на сельское хозяйство. Ю.А. Израэль и О.Д. Сиротенко была рассчитана динамика урожайности яровых зерновых культур в Ставропольском крае. Выяснилось, что климатообусловленная урожайность последних 20 лет увеличилась на 30% по сравнению с аналогичным по продолжительности периодом в середине прошлого века. Обеспеченность урожаев, превышающих 2 т/га, повысилась при этом более чем в пять раз. Также заметно увеличились влагозапасы метрового слоя почвы в июле на европейской территории России.

Согласно рассматриваемым в [11] сценариям на территории России с развитым сельским хозяйством ожидается увеличение осадков до 20 – 30% как зимой, так и летом. Температура зимнего периода будет расти быстрей, чем температура воздуха в теплый период года.

При глобальном потеплении существенно изменится физико-географическая зональность территории. Резко сократится площадь полярно-тундровой зоны – в европейской части России тундра должна практически исчезнуть. Значительно сократится и зона тайги, но пояс широколиственных лесов, занимающий сейчас сравнительно небольшую площадь, при потеплении образует сплошную широтную зону от западной границы страны до Тихого океана. Степная и лесостепная зона также расширится и продвинется на север до южных границ Московской области.

Однако при интерпретации подобных данных необходимо проявлять осторожность, учитывая, что эти модели отражают лишь необходимые, но не достаточные условия смены растительного покрова.

Анализ классического показателя теплообеспеченности растений – суммы температур воздуха за период с температурой выше 100С выявил, что северная граница земледелия, совпадающая с изолинией сумм, равной 10000С, к середине текущего столетия достигнет побережья Белого и Карского морей, т. е. почти вся европейская территория России станет пригодной для земледелия.

Изолиния сумм температур 22000С определяет северную границу территории, где в 90%лет могут созревать ранние сорта кукурузы, т.е. возможно интенсивное земледелие. Более того, в России появятся территории с суммами температур, превышающими 3400 – 36000С, где может быть создана база субтропического земледелия (хлопчатник, цитрусовые и др. теплолюбивые культуры).

При потеплении климата земельные ресурсы для интенсивного сельского хозяйства возрастут в 1,5 раза, а биологическая продуктивность земель в среднем на 25 – 30%.

Рассмотрим для Рязанской области изменение таких параметров как суммарная солнечная радиация, гидротермический коэффициент Селянинова, первичная биопродуктивность ландшафтов.

На рисунке 1.4.4 изображено изменение годовой суммарной радиации по данным метеостанций Павелец и Елатьма. Как видно, за период с 1936 по 2003 произошло некоторое снижение данного показателя на величину, примерно равную 90 – 100 МДж/м2. Этому способствовало усиление влияния Атлантики, а именно рост количества циклонов. Максимум же наблюдался в конце 30-х гг. за счет устойчивой антициклональной погоды, формировавшейся вследствие закономерной эволюции форм циркуляции атмосферы в северном полушарии. Распространение на европейскую территорию отрогов Азорского максимума и Азиатского антициклона было необходимым и закономерным этапом этой эволюции [10]. В последние годы вновь наблюдается рост данного показателя, однако он не достиг уровня конца 30-х гг. XX века.

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис.1.4.4. Изменение годовой суммарной радиации за период с 1936 по 2003 годы


Также нами был рассчитан гидротермический коэффициент Селянинова (рис. 2.4.4) – «коэффициент увлажнения вегетационного периода» – характеризует сбалансированность ресурсов тепла и влаги в период активной вегетации. Он позволяет дать приближенную оценку благоприятности климата для сельскохозяйственных культур. По данным большинства авторов, максимальные урожаи зерновых отмечаются при ГТК=1,2; значения свыше 2,0 свидетельствуют о значительном переувлажнении (наблюдалось в 1978, 1990, 1993); ГТК менее 0,6 соответствует сильной и очень сильной засухе (отмечалась в области повсеместно в 1936, 1938, 1972 гг., в 1981 и 2002 гг. – только в Мещере). Анализ динамики ГТК показывает, что происходящие изменения направлены в сторону оптимизации увлажнения: тенденция к переувлажнению 1970-1980-х гг. сейчас не проявляется, а среднее значение ГТК за период «глобального потепления» (начиная с 1970 г.) практически точно составляет – на севере и на юге области – «оптимальное» значение 1,2 (против 1,0 в середине ХХ в.). Этим, в частности, можно объяснить высокие урожаи прошлых лет на территории Рязанской области.

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 2.4.4. Изменение гидротермического коэффициента Селянинова по данным метеостанций Павелец и Елатьма


В таблице 9 охарактеризованы вековые изменения климатических условий функционирования различных растительных сообществ. Из таблтцы следует что наблюдаемая климатическая динамика отличается прежде всего сопряженным ростом ресурсов тепла и влаги («термогумидным трендом»), причем происходят не просто изменения средних значений метеоэлементов, но существенные климатические сдвиги, способные в будущем повлиять на границы природных зон.

В частности, климатическая ситуация в начале XX века в Елатьме благоприятствовала развитию там хвойно-широколиственных подтаежных лесов. В настоящее время возрастание суммы активных температур до 23800С, а количества осадков примерно до 700 мм пока еще не препятствует функционированию подтаежных геосистем, но обеспечивает возможность существования дубово-осиновых лесов и остепненных сосняков.

Таблица 9. Изменения условий существования растительных сообществ в Рязанской области в связи с климатической динамикой (с 1930-х гг. по начало XXI в.)

Район метео-станции Период Средние значения: Возможность существования сообществ:


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

r, мм хвойных и смешанных лесов широколиственных лесов, лесостепи, степи
Павелец 1936-1940 2493 412 - Типчаково-ковыльные засушливые степи

1936-1969 2315 464 - Луговые степи

1970-2003 2295 546 Остепненные сосняки, дубово-сосновые неостепненные леса (приуральские) Луговые степи, дубово-осиновые леса

2001-2003 2439 562 Остепненные сосняки, дубово-сосновые неостепненные леса (приуральские) Луговые степи, дубово-осиновые леса, восточноевропейские дубравы
Елатьма 1886-1935 2319 572 Остепненные сосняки, дубово-сосновые неостепненные леса (приуральские) Луговые степи, дубово-осиновые леса

1936-1940 2455 405 - Типчаково-ковыльные засушливые степи

1936-1969 2288 516 Остепненные сосняки Луговые степи, дубово-осиновые леса

1970-2003 2295 640 Остепненные сосняки, дубово-сосновые неостепненные леса (приуральские) Луговые степи, дубово-осиновые леса, восточноевропейские дубравы

2001-2003 2381 688 Дубово-сосновые неостепненные леса (приуральские) Луговые степи, дубово-осиновые леса, восточноевропейские дубравы, грабово-дубовые мезофильные леса

Дальнейший рост суммы биологически активных температур при возрастании или сохранении уровня осадков будет способствовать переходу данной территории в состав зоны широколиственных лесов.

На юге области нет принципиальных различий между направлением развития сообществ Окско-Донской равнины (район Ряжска) и Среднерусской возвышенности (район Павельца). Климатические условия прошлых десятилетий соответствовали параметрам, свойственным северной границе лесостепи. Тенденция к одновременному росту температуры и увлажнения не исключает пока возможности развития луговых степей, но все же более благоприятна для существования восточно-европейских дубрав. Согласно вышеуказанным данным в будущем наиболее вероятно ожидать увеличения количества осадков во всем Центральном регионе России в независимости от особенностей рельефа в соответствии с климатическими аналогами оптимумов голоцена и микулинского межледниковья. В этих условиях в развитии геосистем юга Рязанской области появляется еще один возможный вариант – складывание условий для распространения грабово-дубовых лесов, характерных сейчас для более юго–западных регионов.

Таким образом, современные климатические процессы во многом укладываются в тенденции, характерные для их палеоаналогов, что весьма существенно для процессов зональной динамики. По ряду параметров текущие процессы более значительны, чем в климатический оптимум голоцена.

Необходимо подчеркнуть, что скорость климатических изменений на 1 – 2 порядка выше реальной скорости динамики природных зон, поэтому реальный сдвиг зональных границ возможен лишь при сохранении устойчивой тенденции современных изменений на протяжении нескольких десятилетий. Однако существуют указания на то, что к 2030-м гг. в процессе «глобального потепления» произойдет переход к термоаридному тренду (по правилу Воейкова: «тепло на севере – сухо на юге»), и процессы начнут развиваться по неблагоприятному сценарию.

Видовая структура сообществ – достаточно консервативный параметр, откликающийся на климатические изменения со значительным запаздыванием, в отличие от первичной биопродуктивности. Как следует из данных рисунка 3.4.4, начиная с середины XX века, наблюдается значительный рост продуктивности зональных сообществ, наиболее значительный в ландшафтах Мещеры. При этом в настоящее время прирост достиг значений, типичных для западноевропейских широколиственных лесов (12 – 14 т/га, что примерно на 1/3 выше зональной нормы).


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 3.4.4. Динамика первичной биопродуктивности ландшафтов за период с 1936 по 2007 гг.


Вышеприведенные факты указывают на значимость происходящих климатических изменений, которые при сохранении существующих тенденций могут привести к серьезным изменениям в природной среде: усилению водообмена, росту биопродуктивности и в будущем – сдвигу границ природных зон.


4.5 Предполагаемые перспективы климатических изменений и сопряженных с ними преобразований ландшафтов


Региональный подход к оценке глобальных изменений правомерно рассматривается как один из ведущих методологических аспектов географической экологии, призванной решать глобальные экологические проблемы (Коломыц, 2003).

Анализ данных по Рязанской области позволил выявить отличия климатической ситуации во второй половине XX века и начале XXI века.

Кроме того, был выявлен отклик на климатические изменения таких интегральных характеристик ландшафтов, как сток, биопродуктивность и почвообразование.

Современная климатическая динамика (в частности рост количества осадков) привела к увеличению стока рек на территории Рязанской области.

Термогумидная направленность климатических изменений привела к изменению процессов почвообразования – гумидизации и наступлению леса на степь.

Наблюдается также консервация биопродуктивности на более высоком уровне.

Необходимо отметить, что отклик данных характеристик заметен только при действительно значимых климатических изменениях. Сохранение направленности климатических изменений может повлиять на видовую структуру сообществ, которая является более консервативным параметром. Возможно, что в недалеком будущем на территории Рязанской области будут преобладать широколиственные леса со значительным участием мелколиственных пород.

ЗАКЛЮЧЕНИЕ


В результате проделанной работы было выявлено следующее:

1. За период с конца XIX в. по начало XXI в. произошло увеличение глобальной среднегодовой температуры примерно на 10С. При этом на протяжении рассматриваемого времени можно выделить периоды относительного потепления и похолодания. Наиболее интенсивный рост температуры наблюдается, начиная с начала 1970 гг. ( сейчас коэффициент линейного тренда составляет 0,40С/10 лет, тогда как в начале XX века он равнялся 0,030С/10 лет). Также возросло и количество осадков. Предполагаемой естественной причиной климатических изменений ученые считают изменение количества солнечной радиации, приходящей на верхнюю границу атмосферы в результате колебания солнечной постоянной, колебания радиации из-за изменений астрономических параметров земной орбиты или из-за ослабления радиации стратосферным аэрозолем после крупных вулканических извержений взрывного типа. Из антропогенных причин можно назвать увеличение концентрации углекислого газа и малых примесей в атмосфере, рост производства энергии, который приводит к дополнительному нагреванию атмосферного воздуха и другие.

В результате происходящих изменений уже можно выявить серьезные последствия. Так, например, это сокращение площади ледников (до 50% по сравнению с началом XX века) и уменьшение толщины морских льдов (на 1 – 2 м), изменение границ и толщины снежного покрова в умеренных и высоких широтах (смещение 00 изотермы на 120 км к северу), изменение структуры кораллов в тропических широтах (разрушение и изменение окраски), увеличение длины вегетационного периода на 7 – 10 дней, смещение сроков наступления сезонных явлений в жизни растений и животных (более ранние сроки наступления весенних явлений (на 6 – 8 дней) и более поздние – осенних (также на 6 – 8 дней), расширение границ ареалов растений и животных к северу.

2. В течение рассматриваемого периода на территории Рязанской области также наблюдались климатические изменения. При этом периоды климатической динамики, которые можно выделить на протяжении XX века, в целом совпадают с аналогичными периодами, выделенными М. И. Будыко для мира (до середины 40-х гг. XX века – преимущественное потепление, относительное похолодание до конца 60-х гг. и новая фаза потепления с начала 70-х гг. по настоящее время). Нами было установлено, что за рассматриваемый период времени среднегодовая температура увеличилась более чем на 1,50С, зимние температуры в целом возросли на 50С, а летние снизились на 2 – 30С. Произошло увеличение количества осадков. Прирост составил около 100 мм.

В связи со снижением среднегодовой амплитуды температур коэффициент Хромова снизился примерно на 1,5%.

По сравнению с началом XX века произошло снижение по модулю суммы температур ниже -100С (примерно на 2250С), а также некоторое уменьшение суммы активных температур (примерно на 500С). Снизилась продолжительность периода с суммой температур ниже -100C (на 18 дней) и увеличилась продолжительность периода с суммой активных температур (на 3 дня). Сумма температур выше +150C также снизилась по сравнению с 1886 годом.

3. На основе полученных нами данных можно выявить ряд отличий в современной климатической динамике на территории Рязанской области по сравнению с серединой XX века. В частности, летние температуры оказались на 2 – 30С выше среднемноголетних, однако данная тенденция характерна лишь для первых нескольких лет XXI века, не является устойчивой и была связана с засушливым периодом. Сейчас снова наблюдается обратный процесс – процесс снижения летних температур. Сохраняется субширотное простирание июльских изотерм, при этом они проходят практически перпендикулярно преобладающим северо-западным ветрам.

Простирание январских изотерм в субмеридиональном простирании в целом сохраняется и в начале XXI века. При этом по сравнению с серединой прошлого столетия произошло увеличение средней температуры января примерно на 50С.

Количество осадков на Среднерусской возвышенности осталось практически неизменным, однако сейчас здесь расположен один из минимумов осадков, тогда как еще в конце 80-х гг. в этом районе отмечался один из их максимумов.

По нашим данным приблизительно на 200 – 2500С увеличились суммы активных температур. На 7 – 10 дней в среднем произошло увеличение длительности вегетационного периода.

По сравнению с 1965 годом примерно на 0,4 увеличился коэффициент увлажнения. Современные значения коэффициента увлажнения на территории Рязанской области почти повсеместно соответствуют северной периферии широколиственно-лесной и подтаежной природных зон.

4. Речной сток зависит как от климатических, так и от геолого-геоморфологических факторов. На основе полученных нами данных наиболее значимыми климатическими факторами для стока рек Рязанской области являются осадки, в первую очередь холодного периода, а также зимние температуры. Данные факторы могут значительно усиливаться, или наоборот ослабляться геолого-геоморфологическими факторами и хозяйственной деятельностью человека (например, бассейн Прони, расположенный в условиях практически полной распаханности и, кроме того, на возвышенности, характеризуется зависимостью стока от зимнего промерзания почвы, поэтому влияние зимних температур на сток тоже существенно увеличивается).

Сравнение величин регрессионных коэффициентов при осадках и температуре позволило заключить, что отклик поверхностного стока на колебания осадков в 7 – 9 раз более значителен, чем на изменение температуры.

В целом на всей территории России суммарная годовая величина стока рек является устойчивой. Отклонения стока в отдельные годы невелики и за 21 год не превышают 9 – 10%.

5. Климатическая динамика, наблюдаемая на территории Рязанской области, отличается сопряженным ростом ресурсов тепла и влаги («термогумидным трендом»). Проведенный нами анализ интенсивности происходящих изменений, а также вариационный анализ среднегодовой и зимней температур позволил придти к выводу, что происходят не просто изменения средних значений метеоэлементов, но существенные климатические сдвиги, способные в будущем повлиять на границы природных зон. Термогумидный тренд современного климата привел к многовариантности развития экосистем, к приближению климатических условий на территории области к более северным (по ресурсам увлажнения) и к более западным (по ресурсам тепла). При сохранении существующих тенденций через несколько десятилетий следует ожидать значимых изменений в природной среде: усилению водообмена, росту биопродуктивности и в будущем – сдвигу границ природных зон.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


Агроклиматические условия Рязанской области. Под редакцией Крючкова М. М. Рязань, 1989. – 53 с.

Антропогенные изменения климата: Монография / М.И. Будыко и др./ Под редакцией М.И. Будыко, Ю.А. Израэля. – Л.: Гидрометеоиздат, 1987. – 407 с.

Атлас Рязанской области – М., 1965. – 36 с.

Атлас Рязанской области – М., 2006. – 72 с.

Базилевич Н.И., Гребенщиков О.С., Тишков А.А. Географические закономерности структуры и функционирования экосистем. М., Наука, 1986.

Бардин М.Ю. Изменчивость температуры воздуха над западными территориями России и сопредельными странами в XX веке. // Метеорология и гидрология. №8, 2002. с. 5 – 23.

Борзенкова И.И. О природных индикаторах современного глобального потепления. // Метеорология и гидрология. №6, 1999. с. 98 – 109.

Будыко М.И. Климат в прошлом и будущем. – Л.: ГМИ. 1980.

Гирс А.А., Кондратович К. В. Методы долгосрочных прогнозов погоды. Л., Гидрометеоиздат, 1978. – 343 с.

Глобальные и региональные изменения климата и их природные и социально-экономические последствия. Под редакцией Котлякова В. М., М., ГЕОС, 2000 г.

Израэль Ю.А., Сиротенко О.Д. Моделирование влияния изменений климата на продуктивность сельского хозяйства России. //Метеорология и гидрология. №6, 2003. с. 5 – 17.

Касаткина Е.А., Шумилов О.И., Канатьев А.Г. Проявления циклов солнечной активности в атмосфере Северной Атлантики и Европы. // Метеорология и гидрология. №1, 2006. с. 55 – 59.

Коломыц Э.Г. Региональная модель глобальных изменений природной среды. М., Наука, 2003. – 371 с.

Кондратьев С.А., Бовыкин И.В. Влияние возможных климатических изменений на гидрологический режим системы водосбор – озеро. // Метеорология и гидрология. №10, 2003. с. 86 – 96.

Кренке А.Н., Чернавская М.М. Климатические экстремумы на территории России \ Природа, №7, 2003 год, с. 62 – 66.

Крыжов В.Н. Связь средних месячной, сезонной и годовой температур воздуха на севере России с индексами зональной циркуляции зимой. // Метеорология и гидрология. №2, 2003. с. 15 – 28.

Логинов В.Ф. и др. Оценка вклада естественных и антропогенных факторов в изменчивость солнечной радиации на поверхности Земли. // Метеорология и гидрология. – 1983, №8. – С. 55-60.

Лурье П.М., Панов В.Д. Влияние изменений климата на гидрологический режим р. Дон в начале XXI столетия. // Метеорология и гидрология. №4, 1999. с. 90 – 97.

Мохов И.И., Хон В.Ч. Гидрологический режим в бассейнах сибирских рек: модельные оценки изменений в XXI веке. // Метеорология и гидрология. №8, 2002. с. 77 – 91.

Национальный доклад по проблемам изменений климата. – М.,2002. – 29 с.

Нестеров Е.С. О фазах североатлантического колебания. // Метеорология и гидрология. №1, 2003. с. 64 – 73.

Оганесян В.В. Изменения климата Москвы с 1879по 2002 г. в значениях экстремумов температуры и осадков. // Метеорология и гидрология. №9. 2004. с. 31 – 37.

Официальный сайт Федерального агентства лесного хозяйства Министерства сельского хозяйства Российской Федерации www.rosleshoz.gov

Природа Рязанского края: Монография / Кривцов В.А. и др. / Под ред. В.А. Кривцова; Ряз. гос. пед. ун–т им. С.А. Есенина. – Рязань, 2004. – 257 с.

Природа Рязанской области: Монография/В.А. Кривцов и др./ Под редакцией В.А. Кривцова; Ряз. гос. ун-т им. С.А. Есенина. – Рязань, 2008. – 407 с.: ил.

Пузаченко Ю.Г. Математические методы в экологических и географических исследованиях: Учебное пособие для студентов ВУЗов. – М.: «Академия», 2004 – 416 с.

Семенов В.А., Семенова И.В. Антропогенные и климатические изменения гидрологического и гидрохимического режимов рек бассейна Верхней Оки. // Метеорология и гидрология. №10, 2003. с. 76 – 85.

Соловьев А.Н. Биота и климат в XX столетии. Региональная фенология. – М.: Пасьва, 2005. – 288 с.: ил.

Суркова Г.В. особенности глобальной циркуляции в период оптимума голоцена и позднеплейстоценового криохрона по данным моделей общей циркуляции атмосферы. // Метеорология и гидрология. №6, 2003. с. 18 – 31.

Тобратов С.А., Хламцова О.В. К вопросу об изменениях климата Рязанской области за период инструментальных наблюдений. // Вопросы региональной географии и геоэкологии: Материалы Всероссийской научной конференции «Петр Петрович Семенов-Тян-Шанский и географическая наука: вопросы региональной географии: Межвузовский сборник научных трудов. / Отв. ред. В.А. Кривцов. – Рязань, 2007. – 279 с.

ПРИЛОЖЕНИЯ


Приложение 1


Среднегодовая температура, осадки, амплитуда температур и коэффициент Хромова по данным метеостанции Елатьма за период с 1886 по 2003 гг.


Год Температура Осадки Амплитуда Коэф. Хромова
1886 4,82 550,8 29,7 85,12%
1887 4,6 525,1 29,5 85,02%
1888 2,64 635,6 34,5 87,19%
1889 3,54 489,5 35,2 87,44%
1890 4,98 367,8 35,9 87,69%
1891 4,14 431,2 40,5 89,09%
1892 3,43 470,4 34,9 87,34%
1893 3,12 654,9 41,2 89,27%
1894 4,09 568 28,9 84,71%
1895 4,14 542,6 33,2 86,69%
1896 3,1 530,5 36,3 87,82%
1897 4,26 546,6 33,5 86,81%
1898 4,24 544,1 33,4 86,77%
1899 3,99 677,4 33,7 86,88%
1900 3,03 610,8 33,3 86,73%
1901 4,88 544,8 30,6 85,56%
1902 3,08 601,3 32,7 86,48%
1903 5,42 496,6 38,5 88,52%
1904 3,44 494 26,4 83,26%
1905 4,89 762,4 32,3 86,32%
1906 5,3 576,6 31,4 85,92%
1907 2,5 623,5 35,8 87,65%
1908 2,38 489,5 31,9 86,14%
1909 4,11 550,4 29,3 84,91%
1910 5,12 629,4 34,8 87,30%
1911 4,97 519,3 34 87,00%
1912 3,44 785,3 36,5 87,89%
1913 5,06 527,7 33,3 86,73%
1914 4,6 616,4 31,7 86,06%
1915 4,07 578,9 30 85,27%
1916 4,04 588,2 27,1 83,69%
1920 4,63 410,9 31,9 86,14%
1921
469,6

1922 4,44 689 30,8 85,65%
1923 4,17 755,2 31,3 85,88%
1924 3,89 429,8 32,4 86,36%
1925 5,46 883,3 26,7 83,45%
1926 3,19 685,8 30,2 85,36%
1927 3,34 690,4 35,1 87,41%
1928 3,43 606,8 30,6 85,56%
1929 3,22 524,7 39,9 88,92%
1930 4,84 527,8 32,1 86,23%
1931 3,59 594,9 37,6 88,24%
1932 5,31 456,6 36,5 87,89%
1933 2,79 486,3 38,1 88,40%
1934 4,84 481,4 31,4 85,92%
1935 4,71 662,1 29,2 84,86%
1936 5,3 406,6 36,9 88,02%
1937 5,2 356,1 31,5 85,97%
1938 5,75 395,6 35,7 87,62%
1939 4,29 444,4 31,3 85,88%
1940 3,39 416 41,1 89,25%
1941
510,4

1942 2,15 381,8 39,8 88,89%
1943 4,35 459,1 34 87,00%
1944 4,67 468 29,3 84,91%
1945 2,16 522,7 31,3 85,88%
1946 3,99 421,8 30,8 85,65%
1947 3,91 608,8 30,6 85,56%
1948 4,63 462,3 33,1 86,65%
1949 5,05 545,2 27,4 83,87%
1950 3,69 514,5 34,7 87,26%
1951 3,98 484,7 34,4 87,15%
1952 4,26 763,9 27,1 83,69%
1953 3,83 581,1 36,3 87,82%
1954 4,02 441,5 39,6 88,84%
1955 3,8 596,3 33,5 86,81%
1956 2,49 503,9 42 89,48%
1957 5,64 441,3 27,9 84,16%
1958 3,89 669,2 29 84,76%
1959 4,04 480 32,3 86,32%
1960 4,6 506,9 31,4 85,92%
1961 5,19 443,9 28,5 84,49%
1962 4,88 785,9 26,3 83,19%
1963 2,89 530,8 38,3 88,46%
1964 4,19 513,9 31,8 86,10%
1965 3,52 579,5 29,4 84,97%
1966 5,03 667,9 31,9 86,14%
1967 4,42 493,4 35,4 87,51%
1968 3,28 629,5 34,2 87,08%
1969 2,25 528,7 36,2 87,79%
1970 4,1 604,9 31,8 86,10%
1971 4,36 596,6 31 85,74%
1972 5,33 422,9 40,2 89,00%
1973 4,59 705,3 31,6 86,01%
1974 5,38 568,5 32,1 86,23%
1975 5,85 485,4 28,5 84,49%
1976 2,15 743,6 31,4 85,92%
1977 4,36 687,7 33,1 86,65%
1978 3,28 741,7 32,5 86,40%
1979 4,46 618,1 30,1 85,32%
1980 5,49 787,5 30,3 85,41%
1981 6,01 585,1 28,4 84,44%
1982 4,62 590,7 29,4 84,97%
1983 5,57 562 25,5 82,67%
1984 4,23 611,1 33,2 86,69%
1985 3,61 756,5 34,1 87,04%
1986 4,23 522,9 35,7 87,62%
1987 2,41 533,8 38,8 88,61%
1988 4,86 471,2 31,1 85,79%
1989 6,35 725,9 26,2 83,13%
1990 5,49 885 25,8 82,87%
1991 5,68 495,3 28 84,21%
1992 5,12 683,6 27,2 83,75%
1993 3,91 764,2 24,5 81,96%
1994 3,68 687,7 31 85,74%
1995 6,29 638,5 30,1 85,32%
1999 6,03 624,8 28 84,21%
2000 5,7 693,8 27,1 83,69%
2001 5,56 681,6 34,6 87,23%
2002 5,3 677 37,1 88,09%
2003 4,94 705,7 31,1 85,79%

Приложение 2


Изменение температуры и осадков по месяцам по данным метеостанции Елатьма


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Приложение 3


Сумма температур ниже -100C, длительность периода с такими температурами и количество осадков за этот период по данным метеостанции Елатьма


Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты:

Год Сумма Т Длительность Осадки
1886 -450,7 33 0,6
1887 -571,7 40 8,3
1888 -1358,6 78 59,5
1889 -1138,7 74 38,4
1890 -959,5 60 54,7
1891 -933,9 56 29,4
1892 -987 53 35,2
1893 -1226,5 66 58,5
1894 -628,9 47 33,1
1895 -813,4 54 38,4
1896 -1211,6 76 64,8
1897 -1049,1 64 30,8
1898 -858,7 54 45
1899 -796,2 52 24,6
1900 -925,9 57 45
1901 -630,1 45 47,8
1902 -971,7 54 33,6
1903 -611,5 40 28,3
1904 -626,7 42 13,9
1905 -637,8 42 30,7
1906 -470,2 32 12,3
1907 -1221,6 71 90
1908 -1021,6 65 80,2
1909 -761,8 50 28,5
1910 -501,2 36 10,5
1912 -927,4 55 62,7
1913 -699,3 43 38,2
1914 -466,6 31 19,8
1915 -603,8 44 42,8
1916 -420,5 31 25
1920 -797,2 53 23,9
1922 -664,9 33 30,2
1923 -756,9 53 43,9
1924 -880,6 56 22,1
1925 -278,2 19 5,7
1926 -910,9 61 50,2
1927 -1102,7 68 62,5
1928 -847,5 53 12,6
1929 -1253,2 72 28,2
1930 -697,3 38 39,3
1931 -1124,2 71 25,5
1932 -641,8 40 25,9
1933 -1430,5 82 40,5
1934 -709 46 9,7
1935 -531,6 36 10,2
1936 -432,1 28 21,2
1937 -665,8 43 7
1938 -707,2 45 14,3
1939 -598,7 41 25,2
1940 -1208,3 70 53,4
1942 -1306 73 13,3
1943 -753,5 45 14,3
1944 -422,7 31 5,6
1945 -1120,5 72 32,9
1946 -677,9 40 12,2