Мосты

СОДЕРЖАНИЕ.


1 УСЛОВИЯ ЭКСПЛУАТАЦИИ МОСТА.


2 МАТЕРИАЛЫ.


3 КОНСТРУКТИВНОЕ РЕШЕНИЕ ПРОЛЕТНОГО СТРОЕНИЯ.


4 АРМИРОВАНИЕ ПЛИТЫ НАПРЯГАЕМОЙ АРМАТУРОЙ.


5 АРМИРОВАНИЕ ПЛИТЫ НЕНАПРЯГАЕМОЙ АРМАТУРОЙ.


6 МОСТОВОЕ ПОЛОТНО.

6.1Одежда.

6.2 Тротуар.

6.3 Ограждение.

6.4 Водоотвод.


7 ОПОРНЫЕ ЧАСТИ.


8 НАГРУЗКИ.


9 РАСПРЕДЕЛЕНИЕ ВРЕМЕННОЙ НАГРУЗКИ МЕЖДУ ПЛИТАМИ ПРОЛЕТНОГО СТРОЕНИЯ.


10 ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ УСИЛИЙ В ПЛИТАХ.


11 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.


1 УСЛОВИЯ ЭКСПЛУАТАЦИИ МОСТА.


Температура наружного воздуха.


Средняя по месяцам, 0С:

январь - 11,3

февраль - 11

март - 6,5

апрель 1,5

май 8,2

июнь 13,8

июль 16,8

август 14,4

сентябрь 8,8

октябрь 2,5

ноябрь - 3,2

декабрь - 8,5


Среднегодовая 2,20С

Абсолютная минимальная - 440С

Абсолютная максимальная 340С

Средняя максимальная наиболее жаркого месяца 22,10С

Наиболее холодных суток обеспеченностью:

0,98 - 380С

0,92 - 350С


Наиболее холодной пятидневки обеспеченностью:

0,98 - 340С

0,92 - 310С


Период со средней суточной температурой воздуха:

<80С :

продолжительность суток 236

средняя температура - 40С


<100С :

продолжительность суток 259

средняя температура - 2,80С


Средняя температура наиболее холодного периода: -150С

Продолжительность периода со среднесуточной температурой <00С, сут. 164


Упругость водяного пара наружного воздуха по месяцам, гПа:

январь 2,8

февраль 2,7

март 3,2

апрель 5,1

май 7,2

июнь 11

июль 13,8

август 13,4

сентябрь 9,9

октябрь 6,7

ноябрь 4,8

декабрь 3,5

Средняя месячная относительная влажность воздуха в 13 ч., %:

наиболее холодного месяца 87

наиболее жаркого месяца 57


Количество осадков, мм:

за год 758

жидких и смешанных за год -

суточный максимум 95


Плиты пролетного строения проектируются для эксплуатации в климатической зоне нормальной влажности.


2 МАТЕРИАЛЫ.


Для изготовления плит пролетного строения применяется тяжелый бетон класса по прочности на сжатие В 35, марка бетона по морозоустойчивости F 200, ГОСТ 25192- 82 и ГОСТ 26633- 85. Арматура, применяемая в плитах,- напрягаемая, горячекатаная, класса А- 4; ненапрягаемая- класса А 2, по ГОСТ 578-82. Для закладных, анкеров и прочих изделий применяется сталь по ГОСТ 103- 56* 16Д, 15х СНД- 2.


3 КОНСТРУКТИВНЫЕ РЕШЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ.


В соответствии с заданием выполняется проект однопролетного моста. Длина пролетного строения 17,5 м. Несущий элемент моста- сборные железобетонные плиты с напрягаемой арматурой. Принять пролетное строение из 14 плит, с поперечным прямоугольным сечением с овальными пустотами.

Для обеспечения работы, плиты укладывают на опоры параллельно друг другу, и объединяют в поперечном направлении. Швы между плитами омоналичивают, придавая им шпоночную форму.


4 АРМИРОВАНИЕ ПЛИТЫ НАПРЯГАЕМОЙ АРМАТУРОЙ.


Для плит применяется напрягаемая арматура класса А- 4.В процессе изготовления арматура натягивается на упоры с начальным контролируемым напряжением sp=675МПа.Для восприятия растягивающих напряжений при изготовлении в верхней зоне плиты устанавливается напрягаемая арматура класса А- 4.


5 АРМИРОВАНИЕ ПЛИТЫ НЕНАПРЯГАЕМОЙ АРМАТУРОЙ.


Для плит применяется ненапрягаемая арматура из стали класса А- 2.При изготовлении устанавливается в виде каркасов и сеток.


6 МОСТОВОЕ ПОЛОТНО.


6.1 Одежда.


Конструкция одежды ездового полотна состоит из нижнего и верхнего слоя асфальтобетона общей толщиной 7 см.Асфальтобетон- мелкозернистый, ГОСТ 9128-84.

В качестве защитного слоя гидроизоляции предусмотрен бетон, армированный сварной сеткой по ГОСТу 23279-85, толщиной 40 мм. Арматура изготовлена в виде сварной сетки из стали класса ВА- 1 по ГОСТ 6227-80.


6.2 Тротуар.


Тротуары состоят из накладных сборных блоков, с ограждениями с наружных сторон.Ширина тротуаров принята- 1,5 м.Конструкция одежды на тротуарах состоит из асфальтобетона, уложенного по плитам тротуарных блоков.


6.3 Ограждение.


Принято металлическое, полужесткого типа, барьерное ограждение по ГОСТ 26809-86.Высота ограждения 75 см.


6.4 Водоотвод.


Для обеспечения отвода воды с проезжей части мост расположен на продольном уклоне 4 0/00, поперечный уклон моста 20 0/00. Предусмотрен отвод воды с ездового полотна и тротуаров через водоотводные трубки или вдоль ограждения за пределы моста.


7 ОПОРНЫЕ ЧАСТИ.


Плиты пролетного строения опираются на резиновые опорные части.


Рис. 8.2 Поперечное сечение плитного пролетного строения.


Рис. 8.3 Поперечное сечение плит (размеры в см).





Рис. 8.4 Конструкция дорожной одежды: а- в пределах ездового полотна; б- на тротуаре: 1- асфальтобетон =7 см, =2,3 т/м3; 2- то же, =4 см; 3- защитный слой из армированного бетона, =4 см, =2,5 т/м3; 4- гидроизоляция, =1 см,=1,5 т/м3; 5- цементная стяжка, =3 см, =2,1т/м3; 6- железобетонная плита пролетного строения; 7- плита тротуарного блока.

8 НАГРУЗКИ.


Исходные данные:

Автодорожный мост на дороге 2 технической категории пролетом 17,5 м имеет габарит

Г- 11,5 и два тротуара по 1,5 м (рис. 8.2). Пролетное строение образовано из четырнадцати предварительно напряженных плит, объединенных между собой в поперечном направлении шпоночными швами (рис. 8.3). Оси опирания на опорные части отстоят от концов плит на 0,3 м. Расчетная схема пролетного строения- однопролетная балка с расчетным пролетом lp=17,5-2*0,3=16,9 м.

Нагрузка на тротуары моста при учете совместно с другими нагрузками:

Р=3,92- 0,0196, кПа,

где - длина загружания.

Расчетные нагрузки.

Расчетные нагрузки представляют собой нормативную нагрузку, умноженную на коэффициент надежности по нагрузке f :

f =1,3 , для веса выравнивающего, изоляционного и защитного слоев;

f =1,1 , для веса элементов железобетонного пролетного строения;

f =1,2 , для равномерно распределенной нагрузки;

f =1,5 , для тележки при расчетах элементов проезжей части;

f =1,2 , для одиночной оси.

Динамические коэффициенты для нагрузки А 11.

1+=1+(45-/135) ,> 1,0

f =1,0 для НК- 80

f =1,2 при расчетах тротуаров совместно с другими нагрузками.

1+=1,3 при <1,0 м

1+=1,2 при > 5,0 м для нагрузки НК- 80

1+=1 к нагрузке на тротуарах.

Нагрузки.

Конструкции моста рассчитаны на следующие нагрузки и воздействия:

Постоянные: собственный вес конструкций и воздействие усилия предварительного обжатия.

Временные: вертикальные от подвижного состава и пешеходов.


Определение нагрузок.

Постоянная нагрузка на пролетное строение состоит из собственного веса сборных плит длинной 17,5 м, тротуаров, перильной одежды.

Собственный вес одного метра плиты (рис. 8.3) с учетом бетона продольных швов при плотности железобетона =2,5 т/м3 [1*0,75-2*0,325*0,3- 2(3,14*0,3252/4)]*2,5 *

*10=9,72 кН/м. В скобках записана площадь поперечного сечения плиты как площадь прямоугольника минус площадь двух отверстий, каждая из которых состоит из площади прямоугольника (второй член) и площади двух полукругов или одного круга ( третий член).

При четырнадцати плитах по ширине пролетного строения на 1 м его длины приходится:

9,72*14=136,11 кН/м.

Вес двух тротуаров шириной 1,5 м каждый и перильного ограждения по типовому проекту 2*15=30 кН/м.

Общий собственный вес конструкции на всю ширину пролетного строения

136,11+30=166,11 кН/м.

Принятая конструкция дорожной одежды показана на рис. 8.4 (поперечный уклон моста создается за счет уклона ригеля).

Вес дорожной одежды с полной ширины пролетного строения:

асфальтобетон на проезжей части моста и полосах безопасности

0,07*11,5*2,3*10=18,51 кН/м;

асфальтобетон на тротуарах

0,04*1,5*2*2,3*10=2,76 кН/м;

суммарный вес покрытия ездового полотна и тротуаров

18,51+2,76=21,27 кН/м;

защитный слой из армированного бетона

0,04*11,5*2,5*10=11,5 кН/м;

гидроизоляция

0,01*11,5*1,5*10=1,73 кН/м;

цементная стяжка

0,03*11,5*2,1*10=7,25 кН/м;

суммарный вес защитных и выравнивающего слоев

11,5+1,73+7,25=20,48 кН/м.

Распределив всю нагрузку между плитами поровну, получим на одну плиту:

от собственного веса конструкций

g1=166,11/13,7=12,12 кН/м;

от покрытия ездового полотна и тротуаров

g2=21,27/13,7=1,55 кН/м;

от выравнивающего, изоляционного и защитного слоев

g3=20,48/13,7=1,49 кН/м.

Разделение постоянной нагрузки на три части g1, g2, g3 вызвано разными коэффициентами надежности для этих нагрузок.

Временная нагрузка на пролетное строение для дороги 2 технической категории принимается от автотранспортных средств А-11, от толпы на тротуарах и от тяжелых транспортных единиц НК- 800.

Рис. 8.1 Нагрузки на мост Г 11.5 .


Схемы автомобильных нагрузок А 11 в виде полосы равномерно распределенной нагрузки интенсивностью V=0,98*11 кН/м =0,1*11 тс/м и одиночной тележки с давлением на ось Р=9,81*11 кН = 11 тс .


Схема от тяжелой одиночной нагрузки в виде колесной нагрузки (с одной четырехосной машины) НК 80 общим весом 785 кН (80 тс).


9 РАСПРЕДЕЛЕНИЕ ВРЕМЕННОЙ НАГРУЗКИ МЕЖДУ ПЛИТАМИ ПРОЛЕТНОГО СТРОЕНИЯ.


Метод внецентренного сжатия.

В этом методе наиболее нагруженной всегда является крайняя плита пролетного строения. Линия влияния давления на нее строится по значениям ординат под крайними плитами

=1/n+а12/2ai2

где n- число плит в поперечном сечении моста, n=14; аi- расстояние между центрами тяжести симметричных относительно оси моста плит: а1= 13 м, а2= 11 м, а3= 9 м, а4=7 м,

а5= 5 м, а6= 3 м, а7= 1 м;

аi2=132+112+92+72+52+32+12=455.

Ординаты линии влияния давления на крайнюю левую плиту (рис. 9.1, 9.2, 9.3):

1=1/14+132/2*455=0,257;

1^=1/14-132/2*455=- 0,144.

Коэффициенты поперечной установки определяем для каждого вида нагрузки отдельно как сумму ординат линии влияния давления под центрами тяжести транспортных единиц или полос, для толпы- как ординату под точкой приложения равнодействующей.

При загружании линии влияния нагрузки устанавливаем в самое невыгодное положение с учетом габаритов проезда и правил расстановки автомобилей. Принятый на пролетном строении габарит Г- 11,5 предусматривает две полосы движения. Поэтому в нашем случае расчетное число полос нагрузки А- 11- две.

Для нагрузки А- 11 рассматриваем два варианта расстановки.

Первый вариант- расчетные полосы нагрузки смещаются на край проезжей части с минимальным расстоянием 1,5 м от оси крайней полосы безопасности. В этом варианте усилия от нагрузки А- 11 сочетаются с усилиями от толпы на тротуаре.


Рис.9.1 Загружание пролетного строения методом внецентренного сжатия для нагрузки А- 11 и толпы на тротуаре (размеры в м).


Второй вариант- две полосы (независимо от габарита моста, предусматривающего более одной полосы движения) устанавливаются на край ездового полотна с минимальным расстоянием 1,5 м от оси крайней полосы до бордюра (усилия, соответствующие этому положению нагрузки, учитываются лишь в расчетах на прочность).

Следует помнить, что при определении КПУ для полосовой нагрузки А- 11, для всех полос, кроме первой, в качестве множителя к ординатам должен быть введен коэффициент s1=0,6, учитывающий возможное неполное загружание полос автомобилями.


Рис. 9.2 Загружание пролетного строения методом внецентренного сжатия для нагрузки А- 11 (размеры в м).


Нагрузка НК- 80 устанавливается на краю проезжей части.

Коэффициенты поперечной установки от двух полос нагрузки А- 11 на краю проезжей части (рис. 9.3):

для полосовой нагрузки

КПУА=0,136+0,6*0,107=0,257;

для тележек

КПУАт=0,136+0,05=0,186.



Рис. 9.3 Загружание пролетного строения по методу внецентренного сжатия для нагрузки НК- 80 (размеры в м).


Коэффициенты поперечной установки от толпы на тротуаре КПУт= 0,264.

Коэффициенты поперечной установки от двух полос нагрузки А 11 на краю ездового полотна (рис.9.2):

для полосовой нагрузки

КПУА= 0,193+0,6*0,107=0,257;

для тележек

КПУАт= 0,193+0,107= 0,3.

Коэффициент поперечной установки от нагрузки НК- 80 на краю проезжей части (расстояние от равнодействующей до края полосы безопасности 1,75 м), КПУК=0,128.


Метод внецентренного сжатия моментом кручения.

По обобщенному методу внецентренного сжатия М.Е.Гибшмана ординаты под центрами тяжести крайних плит линии влияния давления на крайнюю плиту вычисляются по формуле:

=1/ n а12/ 2а12+4n(К/ П)

где n- число плит в поперечном сечении, n=14; К- прогиб плиты в сечении под единичной силой вызванный этой силой; П- угол закручивания плиты в месте приложения единичного крутящего момента, вызванный этим моментом; К и П определяются в том же сечении, что и КПУ.

Для середины пролета балки:

К/ П=(1/ 12)*(G Ik/ E I)l2.

Момент инерции поперечного сечения плиты i определяем из условия равенства их площадей и моментов инерции.

Площадь овального отверстия (рис.9.4):

А1=d1h1+(d2/ 4)=32,5*3+(3,14*32,52/ 4)=1804 см2.


Момент инерции овального отверстия относительно его центральной оси

x1- x1:

Ix1=d1h13/ 12+2[0,00686 d4+d2/ 8(0,2122d+h1/ 2)2]=32,5*303/ 12+2[0,00686*

*32,54+3,14*32,52/ 8(0,2122*32,5+30/ 2)2]= 486000 см4.

Для прямоугольника Ix1=bhn13/ 12=A1hn12/ 12, отсюда hn1=12 Ix1/ A1=12*

*486000/ 1804= 56,9 57 cм.

Приведенное поперечное сечение плиты показано на рис.9.4.

Толщина верхней плиты:

hI^=6,5+(62,5- 57/ 2)=9,25 см.

Толщина нижней плиты:

hI=6+(62,5- 57/ 2)= 8,75 см.

Положение центра тяжести плиты относительно ее нижней грани:

Sn=100*752/ 2- 2*32,5*57(8,75+57/ 2)= 143239 см3;

Аn=100*75- 2*32,5*57= 3795 см2;

y =Sn/ An= 143239/ 3795= 37,74 см.

Момент инерции поперечного сечения:

I=100*753/ 12+100*75(75/ 2- 37,74)2- 2[32,5*573/ 12+32,5*57(57/ 2+8,75-

- 37,74)2]= 25,12*105 см4= 25,12*10-3 м4.

Момент инерции кручения определяется для замкнутого коробчатого сечения без учета средней стенки, так как в силу симметрии сечения касательные напряжения в ней отсутствуют:

Iк=4а1222/ [а2/ с2+ а2/ с3+ 2(а1/ с1)],

где а1 и а2- высота и ширина прямоугольника, образованного прямыми, проведенными посередине толщины стенок коробки; с1, с2 и с3- соответственно толщины боковых, нижних и верхней стенок коробки (рис.9.4).

Тогда:

Iк=4*662*87,52/ [87,5/ 8,75+ 87,5/ 9,25+ 2(66/ 12,5)]= 44,44*105 см4= 44,44*10-3 м4.

Поправка на кручение:

4n(К/ П)=(1/ 3)n(GIk/ E I)lp2= (1/ 3)*14(0,42*44,44*10-3/ 25,12*10-3)16,92= 999,63.

Отношение G/ E принято равным 0,42.

Краевые ординаты линии влияния давления:

1=1/ 14+ 132/ 2*455+ 999,63= 0,159;

1^=1/ 14- 132/ 2*455+ 999,63= - 0,017.

Загружание линии влияния производим по описанным выше правилам (рис.9.5).


Коэффициенты поперечной установки от двух полос нагрузки А- 11 на краю проезжей части:

для полосовой нагрузки

КПУА=0,101+ 0,6*0,068=0,142;

для тележек

КПУАт=0,101+ 0,068= 0,169.

Коэффициент поперечной установки от нагрузки НК- 800 на краю проезжей части КПУК= 0,098.

Коэффициент поперечной установки от толпы на левом тротуаре

КПУт= 0,161.


Метод Б.Е.Улицкого.

Ведя расчет по этому методу, принимаем, что все плиты в поперечном направлении соединены между собой шарнирами, расположенными в уровне нейтральной плоскости. Расчленяем пролетное строение на отдельные плиты, проводя вертикальные сечения по шарнирам. Взаимодействие отдельных плит между собой характеризуется поперечными силами Q (x) в этих сечениях. Закон изменения поперечных сил вдоль пролета принят в виде:

Q(x)=n=1 g sin nx/ l ,

где g=2/ l Sl0Q(x)sin (nx/ l)dx.

Число неизвестных в системе равно числу сечений- в нашем примере тринадцати (рис.9.6).


Для определения их составляется система уравнений, каждое из которых выражает равенство кривизн волокон соседних плит в вертикальной плоскости.

В сечении i:

(Б- Ebцbn/ Glk)gi-1- 2(Б+ Ebц bn/ Glk)gi+ (Б- Ebцbn/ Glk)gi+1=(- Кл+ Кпр)*[1± {El/ Glk}bэbц*

*(n/ l)2],


где Б=l2/ n22l- характеризует деформации волокон, вызванные изгибом в вертикальной плоскости силами Q(x); bц- расстояние от расчетного сечения до центра изгиба плиты; bn- расстояние от плоскости действия сил Q(x) до центра изгиба плиты; bэ- расстояние от плоскости действия внешних сил до центра изгиба плиты.

Геометрические характеристики сечения плиты, полученные из предыдущих расчетов:

I= 25,12*105 см4; Ik= 44,44*105 см4; G/ E= 0,42.

Поскольку поперечное сечение плиты симметрично, то центр изгиба плиты лежит на оси симметрии и bц=bn=bэ= 50 см.

Коэффициенты при неизвестных g вычисляются при

Б= 16902/ n22 25,12*105= 0,115/ n2;

Ebцbn/ GIk=502/ 0,42*44,44*105= 0,0014.

Значения грузовых членов определяем исходя из загружения пролетного строения еденичной равномерно распределенной вдоль пролета нагрузкой q= 1 Н/ см.

При этом:

К= 2 l2q/ n33l(1- cos n)= 2*16902*1/ n33 25,12*105(1- cos n)= 0,074/ n3(1- cos n)=

=0,147.

При установке экстремальные коэффициенты каждого метода сведены в таблицу 9.1.


Таблица 9.1 Коэффициенты поперечной установки, полученные разными методами.


Анализ данных, помещенных в табл. 9.1, показывает, что коэффициенты поперечной установки, определенные по методу внецентренного сжатия, оказываются существенно разными по сравнению с определенными другими методами. Наибольшее приближение к значениям, полученным по методу Б.Е.Улицкого, основанному на наиболее точных предпосылках, дает метод распределения нагрузки для плитных пролетных строений М.Е.Гибшмана.

При выполнении курсовых и дипломных проектов, если отношение ширины плитного пролетного строения к длине пролета меньше единицы, можно пользоваться методом распределения нагрузки для плитных пролетных строений М.Е.Гибшмана либо обобщенным методом внецентренного сжатия.

В сечениях у опор считаем, что каждая из плит воспринимает лишь нагрузку, расположенную непосредственно на ней.

Поскольку расстояния между центрами полос нагрузки А-11 и между центрами колес нагрузки НК- 800 превышает ширину одной плиты, то на плите размещается лишь одна колея нагрузки или одно колесо и коэффициент поперечной установки в этих случаях КПУоп=0,5.


10 ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ УСИЛИЙ В ПЛИТАХ.


Внутренние усилия в плитах определяем от комбинации постоянных и временных нагрузок путем загружения соответствующих линий влияния (рис. 10.1 и 10.2, а и б).

При вычислении расчетных усилий учитываются следующие расчетные коэффициенты:

коэффициенты надежности по нагрузке:

для собственного веса конструкций f1= 1,1;

для слоя покрытия f2= 1,5;

для выравнивающего, изоляционного и защитного слоев f3= 1,3;

для полосовой нагрузки fA= 1,2;

для тележки А-11 при длине загружения

= lp= 16,9 м < 30 м

fAт= 1,5- 0,01= 1,5- 0,01*16,9= 1,33 ;

принимаем fАт= 1,5;

для толпы на тротуаре fт= 1,2;

для нагрузки НК- 800 fК= 1;

динамические коэффициенты:

для нагрузки А-11 при длине загружения = 16,9 м

(1+)А= 1+ [(45- )/ 135]= 1+[(45- 16,9)/ 135]= 1,21;

для нагрузки НК- 800 при = 16,9 м > 5 м

(1+ )К= 1,1.

Интенсивность равномерно распределенной нагрузки от толпы на тротуарах

рт= 4- 0,02= 4- 0,02*16,9= 3,66 кПа.

Интенсивность полосовой нагрузки А-11 qпол= 11 кН/ м.

Давление на ось тележки А-11 РАт= 110 кН. Давление на ось спецмашины НК- 800 РК= 800/ 4= 200 кН.


При определении изгибающего момента в середине пролета от временных нагрузок учитываем коэффициенты поперечной установки, полученные наиболее точным методом Б.Е.Улицкого. Поперечную силу в опорном сечении от временных нагрузок вычисляем с учетом изменения коэффициентов поперечной установки по длине пролета (рис. 10.2, в).

Изгибающий момент в сечении посередине пролета (рис. 10.1) определяем при площади линии влияния момента для этого сечения

М= (1/ 2) lp (lp/ 4)= 16,92/ 8= 35,701 м2.

От постоянных нагрузок

Мg= (f1 q1+ f2 q2+ f3 q3) M= (1,1*12,12+ 1,5*1,55+ 1,3*1,49)35,701= 628,11 кН*м;

Мgn= (12,12+ 1,55+ 1,49)35,701= 541,21 кН*м.

От временных нагрузок определяем изгибающие моменты при трех вариантах загружения:

от нагрузки А-11 и толпы на тротуарах (ширина тротуара bт= 1,5 м)

М= (1+ )А(fА qпол*КПУАМ+ fАтРАт*КПУАт*21yf)+ fтртbт*КПУтМ= 1,21[1,2*11*

*0,151*35,701+ 1,33*110*0,192(4,23+ 3,85)]+ 1,2*3,65*1,5*0,056*35,701= 492,084 кН*м;


Мn= 11*0,151*35,701+ 110*0,192*7,95+ 3,65*1,5*0,056*35,701= 59,299+ 167,904+ 10,946=

=238,149 кН*м;


от двух полос нагрузки А-11, максимально приближенных к бордюру

М=(1+ )А(fА qпол*КПУА*М+ fАтРАт*КПУАт*21yf)= 1,21[1,2*11*0,171*35,701+ 1,5*

*110*0,201(4,23+ 3,85)]= 421,754 кН*м;


от нагрузки НК- 800

М=(1+ fК РК*КПУК*yf= 1,1*1*200*0,099(3,62+ 3,86+ 4,23+ 3,86)= 339,1 кН*м;

Мn= 200*0,099*15,57= 308,3 кН*м.


Максимальный момент от постоянных и временных нагрузок возникает при установке на пролетное строение двух полос нагрузки А-11 на краю ездового полотна и равен М= 628,11+ 421,754= 1049,864 кН*м. Этот момент используется в расчетах на прочность. Поскольку нагрузки НК- 800 и А-11, установленные у бордюра, не учитываются в расчетах трещиностойкости, то эти расчеты выполняются по значению нормативного момента, полученного при загружении пролетного строения нагрузкой

А-11 и толпой на тротуаре: Мn= 541,21+ 297= 838,21 кН*м. Моменты от постоянных нагрузок: расчетный Мg= 628,11 кН*м, нормативный Мgn= 541,21 кН*м.


Определяем поперечную силу у опоры (рис. 10.2) при площади линии влияния QА

Q= 1/ 2 y1 lp=(1/ 2)*1*16,9= 8,45 м.


От постоянных нагрузок

Qg=(f1 g1+ f2 g2+ f3 g3)Q=(1,1*12,12+1,5*1,55+1,3*1,49)8,45=148,67 кН;

Qg=(12,12+1,55+1,49)8,45=128,102 кН.

При определнии поперечной силы от временных нагрузок график изменения коэффициентов поперечной установки по длине пролета, по рекомендации Н.И.Поливанова, принимаем состоящим из трех участков: в средней части пролета длиной 2/3 lp значение коэффициента поперечной установки постоянно и равно КПУ середины пролета (КПУА, КПУАт или КПУК в зависимости от расчетного случая), на приопорных участках длиной l1=16,9/6=2,8 м значение КПУ меняется от КПУ середины пролета до КПУоп=0,5.

В соответствии с характером изменения коэффициента поперечной установки (рис.10.2) полосовую нагрузку учитываем по всей длине пролета с постоянным КПУА и дополнительно на приопорных участках длиной 2,9 м - с КПУ, изменяющимся от нуля со стороны пролета до (0,5-КПУА) на опорах. Перемножение эпюр qпол. и КПУ производим по методу Симпсона.

Рассматриваем варианты размещения временной нагрузки по ширине пролетного строения.

Две полосы нагрузки А-11 смещены к краю проезжей части и сочетаются с толпой на тротуаре:

КПУА= 0,151, КПУАт= 0,192, КПУт= 0,056.

Q= (1+fА qпол{QКПУА+lI/ 6[y1(КПУоп-КПУА)+4(y1+y2)/ 2*(КПУоп-КПУА)/ 2]+

+lI/ 6*4(y3/ 2)*(КПУоп-КПУА)/ 2}+ (1+fАтРАт21yf КПУАтf= 1,21*1,2*11{8,45*0,151+

+(2,8/ 6)*[1(0,5- 0,151)+4(1+ 0,941)/ 2*(0,5- 0,151)/ 2+4(0,166/ 2)*(0,5- 0,151)/ 2]}+ 1,21х

х1,5*110(1*0,5+ 0,9112*0,335)= 189,235 кН;

Qn= 11[8,45*0,151+ (2,8/ 6)(1*0,349+4(1,941/ 2)*(0,349/ 2)+4(0,166/ 2)*(0,349/ 2))]+110х

х 0,8053= 90,599 кН.

Две полосы нагрузки А-11 максимально приближены к бордюру:

КПУА= 0,171, КПУАт= 0,201.

Q= (1+fА qпол{QКПУА+lI/ 6[y1(КПУоп-КПУА)+4(y1+y2)/ 2*(КПУоп-КПУА)/ 2]+

+lI/ 6*4(y3/ 2)*(КПУоп-КПУА)/ 2}+ (1+fАтРАт21yf КПУАтf= 1,21*1,2*11{8,45*0,171+

+(2,8/ 6)*[1(0,5- 0,171)+4(1+ 0,941)/ 2*(0,5- 0,171)/ 2]+(2,8/ 6)4(0,166/ 2)*(0,5- 0,171)/ 2}+ +1,21*1,5*110(1*0,5+ 0,9112*0,4378)= 210,165 кН

Нагрузка НК- 800

Q= (1+fКРК21yf КПУКf= 1,1*1*200(1*0,5+ 0,929*0,328+ 0,858*0,156+ 0,787*0,099)=

= 223,62 кН.

Максимальная поперечная сила возникает при действии на пролетное строение нагрузки НК- 800 и равна Q= 148,67+ 223,62= 372,29 кН.

Эта поперечная сила должна учитываться в расчетах на прочность. В расчетах на трещиностойкость следует учитывать нормативную поперечную силу от нагрузки

А-11 на краю проезжей части и толпы на тротуарах Qn= 128,10+ 90,599= 213,7 кН.

Расчетная поперечная сила только от постоянных нагрузок Qg= 148,67 кН, а нормативная Qgn=128,10 кН.

Расчет плиты по предельным состояниям I и II групп.

Для плит принят бетон класса В35 (марка М420) с Rb= 17,5 МПа, Rbt= 1,2 МПа

Rbn= 25,5 МПа, Rb,ser= 25,5 МПа, Rb,me1= 18,5 МПа, Rb,me2= 15 МПа, Rbt,ser= 1,95 МПа,

Rb,sh= 3,2 МПа.

Продольная рабочая арматура предварительно напряженная стержневая класса А- IV с Rp= 500 МПа и Rpn= 600 МПа. Модуль упругости арматуры Ep= 2*105 МПа.

Поперечная арматура класса А- II с Rser= 215 МПа. Отношение модуля упругости арматуры к модулю упругости бетона n1= 7,5.

Сечение плиты приводим к двутавровому. Замена овальных отверствий плиты прямоугольными, эквивалентными им по равенству площадей и моментов инерции, была произведена ранее (рис.9.4). Исходя из этого ширина ребра b= 12,5*2+ 10= 35 см. Остальные размеры приняты без изменения (рис.10.3). Ориентировочно принимаем рабочую высоту сечения hd= 0,9h= 0,9*75= 67,5 см.


Приближенно требуемое количество растянутое арматуры нижней зоны получаем по максимальному моменту М= 1049,864 кН*м, полагая, что высота сжатой зоны совпадает с толщиной верхней полки x = h‘f :

Атрр= 1,1[М/ Rp(hd- 0,5 h‘f)]= 1,1[1049,864*105/ 500*102(67,5- 9,25/ 2)]= 33,40 см2.

Принимаем в нижней зоне плиты 16 18 А- IV с Ар= 40,72 см2. Для погашения растягивающих напряжений в верхней зоне, возникающих от предварительно-

го напряжения нижней арматуры, и из условий работы плиты в монтажной стадии в верхней зоне устанавливаем 2 18 А- IV с А‘р= 5,09 см2. Кроме того, четыре стержня из второго ряда нижней зоны плиты на приопорных участках длиной 1,65 м выключаются из работы за счет обмазки. При длине зоны передачи напряжений 20d получаем, что сечение, в котором вся предварительно напряженная арматура включается в работу, отстоит от торца плиты на 1,65+ 20*1,8= 2 м, а оси опирания на 1,7 м (ось опирания находится на расстоянии 30 см от торца плиты).

Размещение арматуры в поперечном сечении показано на рис.10.4.

Положение центра тяжести нижней арматуры относительно нижней грани сечения в средней части плиты

ар= (12*5+ 4*10)/ 12+4= 6,25 см.

Рабочая высота сечения hd= 75- 6,25= 68,75 см.

Геометрические характеристики сечения плиты. Площадь приведенного сечения

Ared= bh+ (b‘f- b)h‘f+ (bf - b)hf+ n1(Ap+ A‘p)= 35*75+ (100- 35)9,25+ (100- 35)8,75+ +7,5(40,72+ 5,09)= 4138,575 см2.

Статический момент приведенного сечения относительно нижней гравни плиты

Sred= 0,5bh2+ 0,5(bf - b)hf2+ (b‘f- b)h‘f(h- h‘f/ 2)+ n1[Apap+ A‘p(h- a‘p)]= 0,5*35*752+ 0,5х

х (100- 35)9,25(75- 0,5*9,25)+ 7,5[40,72*6,25+ 5,09(75- 4)]= 147857,92 см2.


Положение центра тяжести приведенного сечения относительно нижней грани плиты

yн.г.red= Sred/ Ared= 147857,92/ 4138,575= 35,73 см.

Положение центра тяжести приведенного сечения относительно верхней грани плиты

yв.г.red= h- yн.г.red= 75- 35,73= 39,27 см.

Момент инерции приведенного сечения относительно оси, проходящей через центр тяжести сечения перпендикулярно плоскости изгиба,

Ired= b/ 3[(yв.г.red)3+ (yн.г.red)3]+ (b‘f- b)(h‘f)3/ 12+ (b‘f- b)h‘f *(yв.г.red- h‘f / 2)2 + (bf - b)hf3 +

+ (bf - b)hf(yн.г.red- hf / 2)2 + n1[A‘p(yв.г.red - a‘p)2 + Ap(yн.г.red- ap)2]= 35/ 3(39,273 +35,733)+

+(100- 35)9,253/ 12+ (100- 35)*9,25(39,27- 9,25/ 2)2+ (100- 35)8,753/ 12+(100-35)8,75х

х (35,73- 8,75/ 2)2+ 7,5[5,09(39,27- 4)2 + 40,72(35,73- 6,25)2]= 28,4*105 см4.

Определение потерь предварительного напряжения. Предварительные напряжения, контролируемые к концу натяжения арматуры, по рекомендациям норм для стержневой арматуры p.max= 1,15Rp= 1,15*500= 575 МПа. К моменту окончания обжатия бетона потери первой группы для конструкции с натяжением арматуры на упоры составят:

от релаксации напряжений в арматурной стали для стержневой арматуры, натягиваемой механическим способом, при p.max= 575 МПа > 0,5Rpn= 0,5*600= 300 МПа

з= 0,1p.max- 20= 0,1*575- 20= 37,5 МПа;

от деформации анкерных устройств на упорах при натяжении арматуры с одной стороны (относительное укорочение при конусном анкере Ж l= 0,2 см и общая длина арматуры l= 18 м)

l =( Ж l / l)Ер= (0,2/ 17,5*102)*2*105= 22,86 МПа;

от температурного перепада, принимая разность между температурой арматуры и упоров, воспринимающих усилие натяжения, ввиду отсутствия точных данных по рекомендации СНиП 2.05.03 Жt0= 650C

в= 1,25Жt0= 1,25*65= 81,25 МПа.

Таким образом, к моменту окончания обжатия бетона в арматурах обеих зон

п1= з+ l + в= 37,5+ 22,86+ 81,25= 141,61 МПа.

Напряжения в предварительно напряженной арматуре после проявления потерь первой группы составят

p= ‘p= p.max- n1= 575- 141,61= 433,39 МПа.

На стадии эксплуатации проявляются потери второй группы- от ползучести и усадки бетона. Определяем их по приближенным зависимостям отдельно для сечения посередине пролета и сечения на расстоянии 1,7 м от опоры.

Для обоих сечений нормативное значение равнодействующей усилий предварительного напряжения с учетом первых потерь

N0= p(Ap+ A‘p)= 433,39*10-1(40,72+ 5,09)= 1985,36 кН.

Положение равнодействующей N0 относительно центра тяжести приведенного сечения

е0= p[Ap(yн.г.red- ap)- A‘p(yв.г.red - a‘p)]/ N0= 433,39*10-1[40,72(35,73- 6,25)- 5,09(39,27- 4)]/ 1985,36= 22,29 см.

Сечение посередине пролета.Напряжения в бетоне на уровне центра тяжести арматуры Ар и изгибающего момента от нормативного значения постоянных нагрузок (Мgn= 541,21 кН*м)

bp= N0/ Ared+ N0e0/ Ired(yн.г.red- ap)- Mgn/ Ired(yн.г.red- ap)= (1985,4*103/ 4138,575)+ +(1985,4х103*22,29/ 28,4*105)(35,73- 6,25)- (541,21*105/ 28,4*105)(35,73- 6,25)=

= 377,13 Н/ см2= 3,77 МПа.

При передаточной прочности бетона равной 70 % класса прочности бетона

R0= 0,7*35= 24,5 МПа, потери от ползучести бетона в арматуре Ар

g= 170bp/ R0= 170*(3,77/ 24,5)= 26,16 МПа.

Напряжения в бетоне на уровне центра тяжести арматуры А‘р от сил предварительного напряжения и действия постоянных нагрузок

‘bp= N0/ Ared- N0e0/ Ired(yв.г.red- a‘p)+ Mgn/ Ired(yв.г.red- a‘p)= (1985,4*103/ 4138,575)-

- (1985,4х103*22,29/ 28,4*105)(39,27- 4)+ (541,21*105/ 28,4*105)(39,27- 4)= 602,46 Н/ см2=

= 6,02 МПа.

Потери от ползучести бетона в арматуре А‘р

g= 170*(6,05/ 24,5)= 41,771 МПа.

Потери от усадки бетона класса прочности В 35, подвергнутого тепловой обработке, 1= 35 МПа.

Тогда потери второй группы составят:

для арматуры нижней зоны

п2= 26,16+ 35= 61,16 МПа;

для арматуры верхней зоны

‘п2= 41,771+ 35= 76,771 МПа.

Полные потери и предварительные напряжения на стадии эксплуатации:

для арматуры нижней зоны

п= п1+ п2= 141,61+ 61,16= 202,77 МПа;

0= p.max- п= 575- 202,77= 372,23 МПа;

для арматуры верхней зоны

‘п= 141,61+ 76,771= 218,381 МПа;

‘0= 575- 218,381= 356,619 МПа.

Сечение на расстоянии 1,7 м от опоры. Момент от нормативного значения постоянных нагрузок:

g1+ g2+ g3= 12,12+ 1,55+ 1,49= 15,16 кН/ м;

Мgn=(g1+ g2+ g3)lp/ 2*1,7-(g1+ g2+ g3)1,72/ 2=15,16(16,9/ 2)1,7-15,16(1,72/ 2)=195,86 кН*м

Напряжения в бетоне на уровне центра тяжести арматуры Ар от сил предварительного напряжения и постоянных нагрузок:

bp= (1985,4*103/ 4138,575)+(1985,4*103*22,29/ 28,4*105)(35,73- 6,25)-(195,86*105/28,4х

х105)(35,73- 6,25)= 735,61 Н/ см2= 7,36 МПа.

Потери от ползучести бетона

g= 170*(7,36/ 24,5)= 51,07 МПа.

Напряжения в бетоне на уровне центра тяжести арматуры А‘р от сил предварительного напряжения и постоянных нагрузок

‘bp= (1985,4*103/ 4138,575)-(1985,4*103*22,29/ 28,4*105)(39,27- 4)+(195,86*105/ 28,4х

х105)(39,27- 4)= 173,57 Н/ см2= 1,74 МПа.

Потери от ползучести бетона в арматуре А‘р

g= 170*(1,74/ 24,5)= 12,07 МПа.

С учетом потерь от усадки бетона 1= 35 МПа потери второй группы для этого сечения составят:

для арматуры нижней зоны п2= 51,07+ 35= 86,07 МПа;

то же, верхней п2= 12,07+ 35= 47,07 МПа.

Полные потери и предварительные напряжения на стадии эксплуатации:

для арматуры нижней зоны:

‘п= 141,61+ 86,07= 227,68 МПа;

‘0= 575- 227,68= 347,35 МПа;

для арматуры верхней зоны:

‘п= 141,61+ 47,07= 188,68 МПа;

‘0= 575- 188,68= 386,32 МПа.

Проверка плиты на прочность по изгибающему моменту на стадии эксплуатации. Предполагаем, что нейтральная ось проходит в ребре и устанавливаем расчетный случай по напряжениям в арматуре Ар.

Предварительные напряжения в напрягаемой арматуре сжатой зоны А‘р за вычетом потерь при коэффициенте надежности g= 1,1.

ре1= ‘0 g= 356,619*1,1= 392,28 МПа.

Приращение напряжений в арматуре Ар от действия внешней нагрузки

а= 15,5Г {Rbn[(bf- b)hf+ bhd]+(450- ре1)А‘р}/ Ар= 15,5Г{25,5[(100- 35)9,25+ 35* *68,751]+(450- 392,28)5,09}/ 40,72= 673,96 МПа.

Суммарные напряжения в арматуре Ар от внешней нагрузки и сил предварительного напряжения

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: