Xreferat.com » Рефераты по геодезии » Проект геодезического обоснования стереографической съемки масштаба 1:5000

Проект геодезического обоснования стереографической съемки масштаба 1:5000


Трехштативная система.


Это метод измерения углов.

В качестве визирных целей используют специальные марки.

И теодолит и марки при закреплениях закреплены в подставки. Подставки закрепляются на штативах. При измерениях как прибор, так и визирная цель должны быть установлены точно над центрами пунктов, то есть оси марок и теодолита должны проектироваться в центр пункта. Сначала мерим угол ABC. Над пунктами устанавливаем штативы с закреплёнными на них подставками (без теодолита). С помощью оптических центров. В подставки точек А и С ставятся марки, в точку В – теодолит, затем задний штатив переносят с А на D и центрируют. Не трогая штатив с подставкой в точке В и С, вынимаем теодолит и марку, и меняем их местами.


A C


B D


В работе мы используем способ круговых приемов и способ отдельного угла.

Способом круговых приемов мы измеряем на станциях:

A,B,E,4,3,1. А на всех остальных применен способ отдельного угла.


Измерение линий светодальномером


Предположим, что в некоторый момент времени Т1 передатчик, расположенный в пункте А получает в направлении к пункту В электромагнитные волны в виде отдельного импульса (т.е. прерывисто), который затем отражается и в момент времени Т2 приходит обратно в пункт А. Измерив промежуток времени Т2-Т1 и зная скорость распространения эл.м. волн v, можно подсчитать расстояние D между пунктами А и В, предполагая при этом, что эл.м. Волны распространяются прямолинейно: 2D=v(T2-T1), откуда D=v*Г/2, где Г – время распространения эл.м. волн, равное Т2-Т1. Следовательно, установив на одном конце линии приёмопередатчик, излучающий и принимающий эл.м. волны, а так же устройства для измерения времени распространения этих волн, а на другом отражатель, можно определить расстояние D. Такое устройство,состоящее из двух частей, называется дальномером.


3. Методы создания высотного обоснования крупномасштабных топографических съёмок.


    1. Высотные геодезические сети создаются методом нивелирования .

Они необходимы для обеспечения основы топографических съёмок всех масштабов, а так же для решения народнохозяйственных, научных, инженерно-технических и оборонных задач. На участке запроектировано 1 ход IV класса, остальные техническое нивелирование.

При создании высотной основы топографических съемок применяют нивелиры с цилиндрическими уровнями или с компенсаторами. Для нивелирных работ при крупномасштабных съемках получили распространение точные технические нивелиры. При нивелировании IV класса могут быть использованы серийно выпускаемые в России нивелиры Н3, НС3, НС4, НСК4, а так же зарубежные нивелиры Ni-007, Ni-B5, Ni-B6 и другие.

Техническое нивелирование производят с помощью следующих нивелиров: НСК4, НТ, Ni-050, Ni-D3, Ni-E2 и других.

Для нивелирования III и IV классов применяют двусторонние трехметровые деревянные рейки (типа РН-3). При этом случайные погрешности метровых интервалов допускают соответственно 0.5 и 1.0 мм.

При техническом нивелировании используют как трехметровые цельные рейки, так и складные односторонние рейки длиной 3-4 метра (РН-10 в соответствии с ГОСТ 11158-7


Некоторые характеристики нивелиров, выпускаемых отечественной и зарубежной промышленностью.


Тип нивелира

Страна

изгот-ль

Увеличение зрительной

трубы (кр)

СКП на 1км (мм)

Масса

нивелира

(кг)

Н2 Россия 40 2 6.0
Н3 Россия 30 3 1.8
НС4 Россия 30 6 2.5
Ni-007 Германия 31.5 3 3.9
Ni-025 Германия 20 2-3 1.8
Ni-B3 ВНР 28-32 2 2.3
НТ Россия 23 10-15 1.2
НТС Россия 20 15 1
Ni-050 Германия 16-18 5-10 1

  1. Оценка точности нивелирных построений.

При проектировании нивелирных ходов и сетей, создаваемых в качестве высотной основы топографических съемок, устанавливают погрешности отметок реперов в наиболее слабом месте. При этом полагают, что веса измеренных превышений обратно пропорциональны длинам линий, а средние квадратические случайные и систематические погрешности на 1 км хода известны.


Класс нивелирования в мм на 1 км в мм на 1 км
III 5 0.5
IV 10 1.0
Техническое 25 2.5

Оценка точности нивелирного хода.



Нивелирный ход.


Для вычисления погрешности отметки репера i уравненного нивелирного хода (рис.3 ) рекомендуется формула


L A,i

mн сл.= (L A,i (1 - --------)) 1/2 , (1.3)

L

где

- СКП превышения на 1 км двойного хода;

L A,i - Длина нивелирного хода от начального

репера А до точки i.

L - длина всего нивелирного хода.


Для средней точки хода


mн сл.= 0.5 L1/2 (1.4)


Для учета влияния погрешностей исходных данных в нивелирном ходе после уравнивания имеем:


LA,i

m нид = ------ m AB, 1.5

L

где

m нид -погрешность репера (отметки) i, обусловленная ошибками исходных данных;

m AB - ошибка взаимного расположения исходных реперов А и В.

Для средней точки нивелирного хода имеет место следующая формула:


mн ид = 0.5 mAB , 1.6

вытекающая из формулы (1.5)

Суммарная погрешность положения среднего пункта нивелирного хода на основании (1.4) и (1.6) выражается формулой:


mн2 = 0.25 (2L+mAB2), 1.7


При этом полагается, что влияние систематических погрешностей незначительно по сравнению с другими ошибками.


Оценка точности системы ходов с узловой точкой.

Рассмотрим систему трех ходов (рис. 4), где Рп1, Рп2, Рп3 - исходные реперы.


Система нивелирных ходов с узловой точкой.


На основании теории оценки точности уравненных элементов получим формулу для учета влияния случайных погрешностей измерений


m нсл = (L1- (L1(L2-L3))/N)1/2 1.8


В формуле 1.8 обозначено:

m нсл - погрешность отметки узловой точки;

L1(L2-L3 - длина ходов в км;


N = L1L2 + L1L3 + L2L3 1.9


Так как исходные реперы в общем случае нельзя считать безошибочными, то возникает необходимость учета погрешностей исходных данных. Погрешность отметки узловой точки в системе трех ходов (рис. ) можно подсчитать по формуле:


L1

m н ид = ------ * (L32 * m2 H2,1 + L22 m2 H3.1)1/2 , 1.10

N

где m н ид - погрешность отметки узловой точки за счет погрешностей отметок исходных реперов;

m2 H2,1 + m2 H3.1 - погрешность взаимного положения исходных реперов.

Если принять m2 H2,1 + m2 H3.1 = mH , то

L1

m н ид = ------ * m H (L22 L32)1/2 , 1.11

N


В данной работе оценку точности нивелирного хода выполняем по формуле:

m= (LА,i (1-LA,i/L))1/2.


 = 10 мм на 1 км хода для IV и =25мм на 1км хода для технического нивелирования

1. A-F

LA,i=9.5 km

L=16.33 km

mAB=10(9.5(1-9.5/16.33))1/2=19.33 mm


2 F-ОП

LAi=6.4 км

L=12.2 км

M=10(6.4(1-6.4/12.2))1/2=17.4

Вывод: оценка точности нивелирного хода не превышает допустимого значения.


В данной работе мы использовали нивелир Н3.

В нивелировании IV класса наблюдения на станции выполняют в следующем порядке:

  1. Устанавливают нивелир в рабочее положение с помощью установочного или цилиндрического уровня.

  2. Наводят трубу на черную сторону задней рейки, приводят пузырек уровня подъемным или элевационным винтом точно на середину и берут отсчеты по верхней и средней нитям.

  3. Наводят трубу на черную сторону передней рейки и выполняют действия указанные в п.2.

  4. Наводят трубу на красную сторону передней рейки и берут отсчет по средней нити.

  5. Наводят трубу на красную сторону задней рейки и берут отсчет по средней нити.

При работе нивелиром с компенсатором отсчеты по рейке берутся сразу же после привидения нивелира в рабочее положение и наведение трубы нивелира на рейку.

По окончанию нивелирования по линии между исходными реперами подсчитывают невязку, которая не должна превышать 20 мм * L1/2 (невязки замкнутых полигонов в нивелировании IV класса).


4. Краткие сведения об аэрофототопографической съемке.


Топографические съемки в СССР выполняют аэрофото-топографическим., мензульным, тахеометрическим и другими методами. В настоящее время создание планов крупных масштабов, как правило, производят на основе материалов аэрофотосъемки. При этом основными способами составления крупномасштабных планов являются стереотопографический и комбинированный. Эти способы применяют в зависимости от характера рельефа местности, степени застройки городских территорий и технико-экономических условий.

Стереотопографический способ создания крупномасштабных планов применяют для открытых, незаселенных участков местности, а также для застроенных территорий с одноэтажной или многоэтажной рассредоточенной застройкой. Сущность стереотопографического способа заключается в создании контурной части плана на основе материалов аэрофотосъемки и в рисовке рельефа, выполняемого в камеральных условиях на универсальных стереофотограмметрических приборах.

Достоинство стереотопографического способа является автоматизация целого ряда сложных процессов с использованием ЭВМ. Последовательность выполнения при стереотопографическом способе создания планов крупных масштабов представлена в технологической схеме на рис.

Комбинированный способ создания планов применяют для заселенных участков местности, городских территорий и поселков с плотной многоэтажной застройкой. При комбинированном способе контурную часто плана создают на основе материалов аэрофотосъемки, а дешифрирование участка и рисовку рельефа выполняют на фотопланах непосредственно на местности обычными способами. Таким образом, комбинированная съемка является сочетание аэрофотосъемки с приемами наземного (мензульного) съемки.

Преимущество комбинированного способа создания планов заключается в лучшем отображении формы рельефа в равнинных районах. В тоже время недостатком этого способа является относительно большой объем полевых работ. Последовательность работ при комбинированном способе создания планов определена технологической схемой на рис. Аэрофотосъемку местности выполняют с самолета (АН-30,ИЛ-14ФК) специальными автоматическими аэрофотоаппаратами (АФА). Фотографирование местности производят так, чтобы оптическая ось аэрофоаппарата не отклонялась от отвесного положения более чем на 30.

В результате аэрофотосъемки получают рад взаимно перекрещивающих аэрофотоснимков вдоль каждого маршрута. Необходимым условием обработки аэрофотоснимков является из перекрытие поперек маршрутов.

Величины перекрытий устанавливают в зависимости от масштаба создаваемого плана и рельефа местности, технических средств и условий выполнения аэрофотосъемки.

Для крупномасштабных съемок рекомендуются следующие величины перекрытий аэрофотоснимков:

  • продольное 80-90 %;

  • поперечное 30-40 %.

При выборе масштаба аэрофотосъемки учитывают высоту сечения рельефа и фокусное расстояние (.f об) аэрофотоаппарата, установленного на самолете. При этом высоту полета можно посчитать по формуле

H = f об * m,


где m - знаменатель масштаба аэрофотосъемки.

Для небольших участков местности применяют мензульную или тахеометрическую съемку, если выполнение аэрофотосъемки нецелесообразно.


Составление проекта размещением маркировки опознаков.

Перед выполнением полевых работ составляют проект размещения и геодезической привязки плановых и высотных опознаков, а так же проект маркирован опознаков. При выборе места положения опознаков учитываются следующие требования:

  • обеспечить опознакоми наибольшее количество аэроснимков;

  • облегчить геодезическую привязку аэроснимков.

С этой целью опознаки размещают в зонах поперечного перекрытия. Кроме того, опознаки должны располагаться на местности, удобной для измерений, а так же поблизости от исходных пунктов. Запрещается располагать опознаки на крутых склонах, теневых и закрытых лесом участках местности.


Плановые опознаки.

Плановые опознаки (ОП) являются геодезическим обоснованием аэрофототопографических съемок.

Количество ОП зависит от масштаба съемки. При съемках в масштабе 1: 2000 и 1: 5000 ОП размещают рядами поперек аэрофотосъемочных маршрутов (рис. ). При этом начало и конец каждого маршрута обеспечивают двумя опорными точками.

Расстояние между рядами опознаков или длинны секции принимают равным 160-200 см в масштабе создаваемого плана (в М 1:500 - 8-10 км ). Кроме того устанавливают дополнительные плановые точки, а именно:

а) ОП в середине каждой секции, т.е. через 80-100 см в масштабе создаваемого плана (через 6-8 базисов фотографирования);

б) три ОП в середине секции по границе участка съемке, вдоль маршрутов аэрофотосъемки, т.е. через 40-50 см в масштабе создаваемого плана (через 3-4 базиса фотографирования).

В качестве плановых опознаков выбирают контурные точки местности которые можно определить на аэрофотоснимке с погрешностью не более 0.1 мм. опознаками могут служить пункты исходной геодезической сети, хорошо опознающаяся на аэрофотоснимках, а также точки четких контуров, удобные для определения геодезическими способами.


Высотные опознаки.

Для обработки аэрофотоснимков и стереотопографической рисовки рельефа на универсальных приборах служат высотные опознаки (ОВ). Количество ОВ зависит от масштаба фотографирования, высоты сечения рельефа, характера участка съемки и технических характеристик аэрофотоаппарата. В связи с этим выполняют полную и разрешенную высотную подготовку аэроснимков. При разрешенной высотной подготовке ОВ размещают рядами поперек аэрофотосъемочных маршрутов в зонах поперечного перекрытия аэрофотоснимков. При этом расстояние между рядами или длины секций не должны превышать четырех базисов фотографирования.

Границы участков съемки вдоль аэрофотосъемочных маршрутов обеспечивают дополнительными высотными точками. В этом случае ОВ размещают через два базиса фотографирования.


При съемке в масштабах 1:5000 и 1:2000 и высоте сечения рельефа 1 и 0.5 м расстояния между ОВ вдоль маршрутов не должны превышать 2-2.5 км независимо от масштаба аэрофотосъемки.

При проектировании необходимо учитывать, что ОВ располагают на местности с незначительным уклоном, так как положение опознака по высоте должно быть установлено (по аэрофотоснимку) с погрешностью 0.1h, где h - высота сечения рельефа. Как уже говорилось, в ряде случаев высотные опознаки совмещаются с плановыми. Тогда привязка аэрофотоснимков заключается в определении трёх координат (X,Y,H) точек, представляющих ОПВ.


Привязка опознаков.


Полярный способ.

m2 =ms2 + (m 2/ 2 )* S2

S=0,35*105

m=5’

mS=2

m=2,18 sm


Прямая угловая засечка.


m = m b / 2 sin2 * (sin

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: