Xreferat.com » Рефераты по геологии » Контроль качества геофизического исследования скважин

Контроль качества геофизического исследования скважин

качества геофизического исследования скважин" width="119" height="49" align="BOTTOM" border="0" />, рационально точку полной компенсации выбрать при fМАКС. Тогда в схеме рис. 8-13, б полагается C~ = 0 и расчёт производится по формулам:


Контроль качества геофизического исследования скважин


, где C = C0 + CК – заданная суммарная ёмкость контура; αL – положительный ТКИ (должен быть измерен или взят приблизительно 20ч50∙10-6); αC – отрицательный ТКЕ. В результате такой компенсации получается, что в диапазоне частот контур будет иметь ТКЧ от α = 0 при fМАКС до Контроль качества геофизического исследования скважин при fМИН. Т.е. во всех точках диапазона, кроме fМАКС, будет иметь место недокомпенсация (отрицательный ТКЧ).

Если kД < 1,5, то значительно лучшие результаты по термокомпенсации в диапазоне частот можно получить, если принять так называемую “оптимальную термокомпенсацию”, сущность которой заключается в том, что при fМАКС делают перекомпенсацию (ТКЧ положительный), а при fМИН – недокомпенсацию (ТКЧ отрицательный), причём абсолютные значения ТКС при fМАКС и fМИН должны быть равны (рис. 6.5).


Контроль качества геофизического исследования скважин

Рис. 6.5. Подбор ёмкости.

В результате точка полной компенсации α = 0 будет лежать в промежутке между fМИН и fМАКС, а ТКЧ на концах диапазона будет найден из выражения:

Контроль качества геофизического исследования скважин.

Для получения оптимальной компенсации в схеме рис. 6.4 необходимо, чтобы температурный коэффициент всей минимальной ёмкости контура CМИН = СК + C0 был:

Контроль качества геофизического исследования скважин.

Рассмотренные меры стабилизации частоты не позволяют, однако, получить нестабильность лучше, чем ΔfГ / fГ ≈ 10-4. При необходимости получения более высокой стабильности вместо контуров LC в гетеродине используются кварцевые резонаторы. Кварцевые резонаторы наиболее полно отвечают требованиям стабилизации частоты гетеродина. Они обладают высокой фиксирующей способностью из-за весьма больших добротностей. Их добротность в сотни тысяч раз может превышать добротность контуров LC. При уменьшении температурной нестабильности кварца путём выбора среза, вида и вакуумной герметизации можно получить хорошую эталонность.

Применение таких резонаторов позволяет довести нестабильность частоты до ΔfГ / fГ = (1ч5)∙10-6ч10-7.

Заключение гетеродина в термостат (современные термостаты обеспечивают поддержание температуры внутри своего объёма с точностью до десятых долей градуса) и другие меры стабилизации обеспечивают нестабильность кварцевых гетеродинов в интервале 10-7-10-8.

2. Кварцевая стабилизация частоты


Наиболее эффективной мерой повышения устойчивости частоты автогенераторов является кварцевая стабилизация - используют пьезоэлектрический резонатор, представляющий собой кварцевую пластину с нанесёнными на её поверхность электродами. Если кварцевую пластинку сжать или растянуть, то на её противоположных гранях появляются равные по величине, но разные по знаку электрические заряды. Величина их пропорциональна давлению, а знаки зависят от направления силы давления. Это явление носит название прямого пьезоэлектрического эффекта. Если же к граням пластинки кварца приложить электрическое напряжение, то пластинка будет сжиматься или растягиваться в зависимости от полярности приложенного напряжения. Это явление называется обратным пьезоэлектрическим эффектом. Ценным свойством кварца является очень высокая стабильность частоты механических колебаний, которая определяется геометрическими размерами кварцевой пластинки и направлением деформации.

Для возбуждения механических колебаний к электродам резонатора подводят переменное напряжение. Пьезоэлемент начинает колебаться синхронно с приложенным напряжением. При совпадении частоты подводимого напряжения с собственной частотой колебания пьезоэлемента возникает механический резонанс. Кварцевый резонатор становится эквивалентен последовательному колебательному контуру с собственной частотой кварца: Контроль качества геофизического исследования скважин, где LКВ – эквивалентная индуктивность кварца (от десятых долей до десятков миллигенри), CКВ – эквивалентная ёмкость кварца (десятые или сотые доли пикофарады). Собственная частота колебаний кварца зависит от среза и геометрических размеров пластины. Для различных срезов значение собственной частоты ƒКВ кварца (МГц) колеблется от 1,6/δ до 3,6/δ, где δ – толщина пластины, мм. Добротность резонатора определяется как отношение энергии, запасённой колебательной системой, к энергии потерь за период колебаний. Добротность серийных резонаторов на основной частоте несколько десятков тысяч, а прецизионных – несколько миллионов.

Для кварцевых резонаторов характерен эффект старения, т.е. необратимого изменения частоты в течение нескольких первых месяцев работы. Поэтому основным параметром, характеризующим работу кварцевого автогенератора, является стабильность частоты колебаний. Кроме того, на стабильность частоты влияют ударные и вибрационные нагрузки, влажность, температура, изменение напряжения питания и непостоянство нагрузки. Поэтому современный кварцевый автогенератор помимо активного элемента (транзистора, туннельного диода), кварцевого резонатора и элементов схемы автогенератора должен содержать: буферный каскад с высоким RВХ, обеспечивающий слабую связь автогенератора с нагрузкой и исключающий влияние нагрузки на его работу; систему амортизации для ослабления вибрационных и ударных нагрузок; устройство защиты от воздействия влаги; стабилизированный источник питания; систему термостатирования или термокомпенсации, стабилизирующую влияние частотно-температурных характеристик кварцевых резонаторов. В настоящее время применяют автогенераторы, в которых кварц используют как резистор либо как последовательный контур.


Контроль качества геофизического исследования скважин

Рис. 6.6. Эквивалентная схема автогенератора с кварцем в цепи обратной связи.

Рассмотрим схему автогенератора, в которой кварцевый резонатор используют в качестве последовательного контура. Транзисторный автогенератор с кварцевым резонатором собран по трёхточечной схеме (рис. 6.6). В цепь обратной связи включён делитель, состоящий из кварцевого резонатора с полным сопротивлением ZQ1 и резонатора R1. Колебательная система выполнена из двух контуров: нагрузки коллектора Z1, Z2 и Z3 и цепи обратной связи R1, ZQ1 и Z2. Работа схемы основана на том, что сопротивление резонатора ZQ1 минимально на частоте последовательного резонанса ωКВ и резко увеличивается при отклонении от неё. В результате этого самовозбуждение возможно только в узкой области частот. При правильном выборе параметров добротность контура цепи обратной связи близка добротности кварцевого резонатора и значительно выше добротности коллекторного контура. Добротность колебательного контура - характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше добротность колебательной системы, тем меньше потери энергии в ней за период. Добротность колебательного контура:

Контроль качества геофизического исследования скважин


, где L — индуктивность, C — емкость, R — сопротивление контура. Поэтому частота колебаний определяется контуром цепи обратной связи и близка частоте последовательного резонанса кварца, на которой коэффициент передачи делителя, состоящий из резистора R1 и контура ZQ1, имеет максимальное значение.


3. Механические деформации деталей


Механические деформации отдельных деталей генератора с самовозбуждением, как правило, приводят к изменению индуктивности и ёмкости его колебательного контура, а следовательно, и к изменению генерируемой частоты. Наиболее сильное влияние на частоту генератора оказывают деформации, происходящие в его контурных деталях – в конденсаторах и катушках индуктивности. Кроме того, частота в сильной степени зависит от деформаций, происходящих в экранах генератора. Деформация экранов, окружающих контурные детали, приводит к изменению реактивных сопротивлений, вносимых экранами в эти детали, а следовательно, и к изменению частоты генератора. Наконец, на частоту генератора оказывает также сильное влияние взаимное расположение монтажных проводов. Изменение места расположения этих проводов приводит к изменению их ёмкости по отношению к земле. Эта ёмкость, как известно, входит в колебательный контур генератора.

Различают остаточные и упругие механические деформации. Остаточные деформации могут происходить за счёт механических сотрясений, вибраций и вследствие коробления (искривления) деталей, которые являются результатом их старения. Влажность окружающей среды также иногда приводит к короблению отдельных деталей генератора. Остаточные деформации приводят к смещению градуировки передатчика. Упругие деформации обычно появляются в результате механического сотрясения передатчика, вследствие чего происходит вибрация отдельных деталей, что и приводит к периодическому изменению частоты генератора.

Прямые методы стабилизации частоты в рассматриваемом случае сводятся к правильному размещению передатчика, которое должно обеспечивать минимальное механическое сотрясение. К этим же методам стабилизации частоты относится применение амортизации как всего передатчика в целом, так и отдельных его частей. Косвенные методы стабилизации частоты сводятся к рациональному конструированию отдельных деталей генератора и к их монтажу. С этой точки зрения детали генератора должны обладать высокой механической прочностью. При конструировании катушек индуктивности необходимо следить прежде всего за тем, чтобы в результате тех или иных механических сотрясений не смещались отдельные витки. С этой целью весьма часто применяют так называемую горячую намотку катушек. Через провод пропускают большой ток и намотку производят под этим током. В качестве изолятора, на который наматывается катушка, выбирается материал, который не подвергался бы короблению в результате действия тех или иных внешний условий. Наиболее целесообразным для этого оказывается применение специальной высокочастотной керамики.

При конструировании контурных конденсаторов необходимо следить за тем, чтоб их пластины не вибрировали при механических сотрясениях. Элементарный расчёт показывает, что при высоких нормах стабильности (10-4) недопустимы даже такие маленькие смещения витков катушек индуктивности и пластин конденсаторов, как сотые доли миллиметра.

Экраны генератора должны быть спроектированы так, чтобы не было их смещения, прогибов. Для этого часто применяют литые экраны, механическая прочность которых исключительно велика. Монтаж генератора должен быть жёстким. Применение для монтажа гибких проводов не допускается. Для больше жёсткости монтажа в генераторе с самовозбуждением часто применяют медные трубки, которые обладают высокой механической прочностью. Отметим также, что чем короче волна передатчика, тем в большей степени механические деформации влияют на частоту генератора.


4. Непостоянство напряжений источника питания


В большинстве практических случаев частота генератора за счёт непостоянства питающих напряжений изменяется значительно быстрее, чем за счёт температурных влияний, и в ряде случаев даже быстрее, чем при механических упругих деформациях. Непостоянство напряжений источника питания приводит к целому ряду явлений, которые сопровождаются изменением частоты генератора. Отклонение напряжений от номинальных значений приводит, прежде всего, к изменению режима генератора, следовательно, к изменению токов, что приводит к изменению фазовых углов коэффициента обратной связи, а следовательно и к изменению частоты генератора. Изменение режима генератора приводит к колебаниям амплитуд высших гармоник, вследствие чего изменяется фазовый угол средней крутизны и, следовательно, частоты генератора. Далее непостоянство питающих напряжений приводит к изменению ёмкости переходов транзисторов. Кроме того, это приводит к изменению теплового режима отдельных деталей генератора. Если источники питания недостаточно хорошо заблокированы, то на частоту генераторы будут влиять провода, идущие к источникам питания. Перемещение этих проводов будет вызывать изменение частоты генератора.

Прямые методы заключаются в устранении непостоянства напряжений источников питания. Для этой цели при питании генератора от источника постоянного тока следует применять буферные батареи – аккумуляторы, подключённые параллельно источнику питания.


5. Изменение влажности и атмосферного давления


Диэлектрическая постоянная воздуха является функцией его влажности и атмосферного давления. С изменением диэлектрической постоянной изменяется ёмкость воздушных конденсаторов, что приводит к изменению частоты генератора. При значительных колебаниях влажности и атмосферного давления это изменение частоты может повлиять существенным образом на стабильность частоты генератора и, безусловно, должно учитываться при проектировании стабильных генераторов.

Следует также иметь в виду, что с увеличением глубины повышается температура, а как указывалось выше, с повышением температуры увеличивается ёмкость контура и частота повышается. При изменении влажности, помимо изменения диэлектрической проницаемости, изменяется также поверхностная проводимость всех материалов, что приводит к изменению добротности. В задающих генераторах не рекомендуется применять гигроскопические материалы – дерево, бумагу, прессшпан, пластмассы и т.д. Влияние влажности на частоту генератора в сильной степени снижается при использовании герметизированных деталей. Также целесообразно применение специальных поглотителей влаги.


6. Смена изношенных частей генератора


В случае смены основных контурных деталей – катушек индуктивности и конденсаторов – частота генератора, как правило, изменяется настолько сильно, что требуется новая градуировка передатчика. Смена других деталей генератора – блокировочных конденсаторов, переключателей – также вызывает значительное изменение частоты генератора. Ёмкости указанных деталей, по отношению к земле и по отношению к другим деталям контура генератора, обычно входят в ёмкость контура. Эти ёмкости при смене деталей, а также при изменении их монтажа изменяются, следовательно, изменяется частота генератора. В правильно спроектированном генератора при хорошем монтаже и хороших деталях изменение частоты за счёт смены деталей не должно быть значительным, не должно требовать новой градуировки передатчика. В большинстве случаев оказывается достаточной корректировка частоты посредством специального корректирующего конденсатора, помещённого в контур задающего генератора.


7. Влияние посторонних предметов


Если в результате изменения места расположения окружающих предметов изменяются электрические и магнитные поля генератора, что равносильно изменению ёмкостей и индуктивностей, то неизбежно изменяется частота генератора. Радикальным и единственным методом борьбы с такого рода нестабильностью частоты является тщательное экранирование всего генератора.

VII. Заключение


Проблема обеспечения высокого качества или достоверности промыслово-геофизических данных является одной из актуальнейших задач нефтепромысловой геофизики. Тенденция расширения круга решаемых задач, постоянного усложнения геолого-технических условий производства ГИС, дальнейшая интенсификация производства ставит перед геофизическими предприятиями новые задачи, успешное решение которых может быть обеспечено лишь при постоянном совершенствовании всей технико-методической основы геофизического производства. Обеспечение единства геофизических измерений, достигаемое стандартизацией технических средств измерений и методик обработки геофизических данных, является одним из эффективных направлений решения этой проблемы.

Практика нефтепромысловой геофизики показывает, что стандартизация геофизических СИ является достаточно сложным технологическим процессом, требующим привлечения самых разнообразных средств и методических приёмов. Стандартные образцы веществ, модели пластов и разрезы контрольных скважин представляют собой единую систему физических моделей, использование которых позволяет обеспечить единство геофизических измерений.

Каждый из этих элементов незаменим в иерархии поверочных схем геофизической аппаратуры. Фундаментальные многомерные модели пластов и стандартные образцы состава и свойств горных пород высших порядков, которыми будут оснащаться метрологические центры и крупнейшие геофизические предприятия, позволяют воспроизводить калибровочные значения физических параметров с наивысшей точностью. Однако проектирование и строительство этих сооружений сопряжено с большими затратами средств и времени, кроме того они обладают рядом ограничений – небольшим выбором калибровочных значений параметров, ограниченной возможностью воссоздания различных литофациальных разностей пород, отсутствием возможности имитации реальных геолого-технических условий производства ГИС, которые не позволяют поверять геофизические информационно-измерительные системы в динамическом режиме – том режиме, в котором осуществляются скважинные измерения.

Включение в поверочные схемы геофизических СИ контрольных скважин позволяет устранить некоторую часть указанных ограничений стандартных образцов и моделей пластов. Диапазон изменения физических параметров в разрезах контрольных скважин практически охватывает весь динамический диапазон работы геофизических СИ, в необходимых случаях он может быть значительно расширен за счёт применения имитаторов физических величин. Контрольные скважины являются как бы сосредоточением большого числа моделей пластов различного вещественного состава. В опорных пластах контрольных скважин могут одновременно регистрироваться параметры всех используемых в геофизической практике физических полей. На контрольную скважину можно возлагать и дополнительные задачи: входной и оперативный контроль работоспособности аппаратуры, исследование динамических свойств геофизических измерительных систем, тренаж операторского состава и т.д.

Более сложной задачей является задача обеспечения единства методик обработки геофизических данных. Методология оценки и контроля погрешностей на этом этапе геофизического производства в настоящее время ещё не разработана. Приведённые данные иллюстрируют возможность решения этой проблемы современным системным методом исследования функционирования сложных информационно-измерительных систем методом математического моделирования. С использованием приёмов имитационного математического моделирования можно определить чувствительность геофизических методов к искомым параметрам геологического разреза и найти граничные условия, при которых эти характеристики ИИС превышают влияние искажающих факторов; исследовать зависимость точностных характеристик оценок искомых параметров нефтегазопоисковых объектов от геолого-технических условий производства ГИС, полноты геофизических комплексов, уровня инструментальных или методических погрешностей, наличия априорных данных о скважине и пласте и т.п.; оценить, с учётом нормированных или реальных погрешностей геофизических ИИС, точность определения параметров нефтегазопоисковых объектов и определить условия функционирования этих систем, обеспечивающие оценку искомых с минимальными погрешностями и материальными затратами.

Однако при реализации этого подхода исследователь должен помнить о том, что успешность его работы во многом будет определяться полнотой или достоверностью формализации единого технологического процесса получения и обработки геофизических данных и адекватностью инструментальных и методических погрешностей производства, накладываемых на интерпретационные модели ГИС. Реализация этого подхода сопряжена также с необходимостью выполнения больших объёмов достаточно сложных аналитических работ. Перспективы снятия этих ограничений в значительной степени определяются совершенствованием методик интерпретации геофизических данных и развитием методов обработки данных ГИС на ЭВМ.

VIII. Список использованной литературы


В. Н. Широков, Е. М. Митюшин, В. Д. Неретин, Э. Е. Лукьянов, Д. В. Белоконь, 1996, Скважинные геофизические информационно-измерительные системы. М.: “Недра”.

В. М. Городилин, В. В. Городилин, 1992, Регулировка радиоаппаратуры. М.: “Высшая школа”.

А. М. Блюменцев, Г. А. Калистратов, В. М. Лобанков, В. П. Цирульников, 1991, Метрологическое обеспечение ГИС. М.: “Недра”.

Рудольф Сворень, 1991, Электроника шаг за шагом. М.: “Детская литература”.

Б. С. Гершунский, 1989, Основы электроники и микроэлектроники. Киев: “Выща школа”.

Г. Б. Толкачёв, В. Н. Ковалёв, 1983, Радиоэлектроника. М.: “Высшая школа”.

В. Д. Горшелев, З. Г. Красноцветова, Б. Ф. Фёдоровцов, 1977, Основы проектирования радиоприёмников. Ленинград: “Энергия”.

С. А. Дробов, 1951, Радиопередающие устройства. М.:”Военное издательство военного министерства СССР”.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: