Xreferat.com » Рефераты по геологии » Основы геодезических измерений

Основы геодезических измерений

время заряда


от 6,5 до 8,5 В

1,6 Ач

1,5 ч

Диапазон рабочих температур от- 20°С до +50°С Масса (включая источник питания) 5,5 кг

2.4 Определение положения точек земной поверхности с помощью геодезических спутниковых систем


Разработанные Федеральной службой геодезии и картографии России концепция и программа перехода топографо-геодезического производства на автономные методы спутниковых координатных определений изложены в работе Е. А. Жалковского, Г. В. Демьянова, В. И. Зубинского, П. Л. Макаренко, Г. А. Пьянкова «О концепции и программе перехода топографо-геодезического производства на автономные методы спутниковых координатных определений» (Геодезия и картография, 1998, № 5). Традиционные геодезические методы основаны на последовательном развитии геодезических сетей путем угловых и линейных измерений, требующих для обеспечения прямой видимости между смежными пунктами постройки геодезических знаков, сооружение которых потребовало около 80% средств, затраченных на создание существующих опорных сетей.

По сравнению с традиционными спутниковые методы ГЛОНАСС/GPS имеют следующие преимущества:

передача с высокой оперативностью и точностью координат практически на любые расстояния;

геодезические пункты можно располагать в благоприятных для их сохранности местах, так как не нужно обеспечивать взаимную видимость между пунктами и, следовательно, строить дорогостоящие геодезические знаки;

простота и высокий уровень автоматизации работ;

понижение требований к плотности исходной геодезической основы.

Реализация спутниковых технологий предусматривает построение следующих геодезических сетей:

фундаментальная астрономо-геодезическая сеть (ФАГС) — высшее звено координатного обеспечения; она должна обеспечивать оперативное воспроизведение общеземной геоцентрической системы координат, стабильность системы координат во времени, метрологическое, обеспечение высокоточных космических средств измерений;

высокоточная геодезическая сеть (ВГС), обеспечивающая распростра- нение на всю территорию страны общеземной геоцентрической системы координат и определение точных параметров взаимного ориентирования общеземной и референцной систем координат;

спутниковые геодезические сети 1-го класса (СГС-1).

Эти три класса сетей строго связаны между собой: ФАГС является опорой для ВГС, а ВГС — для СГС-1.

При построении ФАГС, ВГС и СГС-1 предусматривается привязка существующей ГГС к высшему классу спутниковых сетей, т. е. существующая ГГС будет сетью сгущения.

Пункты ФАГС располагаются на расстоянии 800-1000 км, их число — 50+70,10-15 пунктов должны быть постоянно действующими, а остальные — переопределяться группами через промежутки времени, зависящие от геодинамической активности региона.

Пространственное положение пунктов ФАГС определяется в общеземной системе координат с ошибкой положения пунктов относительно центра масс не более (2-3)10-8 R, где R — радиус Земли, ошибка взаимного положения пунктов ФАГС не более 2 см в плане и 3 см по высоте. Для обеспечения этой точности необходимо использовать весь комплекс существующих космических измерений (лазерных, радиоинтерферометрических и других).

ВГС является системой пунктов с расстоянием D = 150-300 км между ними, которые определяются относительными методами космической геодезии со средней квадратической ошибкой не более 3 мм + 5 • 10-8 D для плановых координат и 5 мм + 7 • 10-8 D — для геодезических высот.

СГС-1 состоят из системы легкодоступных пунктов с плотностью, достаточной для использования потребителями всевозможных спутниковых определений. СГС-1 определяются относительными методами космической геодезии со средними квадратическими ошибками: 3 мм + 10-7 D в плане и 5 мм + + 2 • 10-8 D по геодезической высоте для геодинамически активных регионов и 5 мм + 2 • 10-7. D в плане и 7мм + 3 • 10-7 D по высоте для остальных регионов. Среднее расстояние между пунктами СГС-1 равно 25-35 км. В экономически развитых районах пункты СГС-1 в зависимости от требований потребителей могут иметь большую плотность.

Постоянно действующие пункты ФАГС в основном создаются на базе действующих пунктов спутниковых (космических) наблюдений, астрономических обсерваторий, пунктов службы вращения Земли, радиоинтерферометрических комплексов со сверхдальними базами «Квазар», программы «Дельта» и др. На пунктах ФАГС предусматривают две программы наблюдений: постоянные наблюдения спутниковых систем ГЛОНАСС и GPS (включая и международные программы) и наблюдения других специализированных спутников и космических объектов согласно межведомственным программам построения ФАГС.

Следует заметить, что спутниковые технологии не всегда можно использовать при решении традиционных геодезических задач, например, недостаточна относительная точность определений на коротких расстояниях, ограничено использование GPS-методов в точной инженерной геодезии, процесс привязки ориентирных пунктов, легко решаемый в традиционной технологии, становится довольно сложным и дорогим, особенно в закрытой местности, в спутниковой технологии, так как объем спутниковых определений в этом случае возрастает более чем в два раза.


3. Погрешности геодезических измерений (теория и решение задач)


3.1 Геодезическое измерение, результат измерения, методы и условия измерений. Равноточные и неравноточные измерения


Измерением называется процесс сравнения некоторой физической величины с другой одноименной величиной, принятой за единицу меры.

Единица меры – значение физической величины, принятой для количественной оценки величины того же рода.

Результат измерений – это число, равное отношению измеряемой величины единицы меры.

Различают следующие виды геодезических измерений:

Линейные, в результате, которых получают наклонные иррациональные расстояния между заданными точками. Для этой цели применяют ленты, рулетки, проволоки, оптические свето- и радиодальномеры.

Угловые, определяющие величины горизонтальных углов. Для выполнения таких измерений применяют теодолит, буссоли, эклиметры.

Высотные, в результате, которых получают разности высот отдельных точек. Для этой цели применяют нивелиры, теодолиты-тахеометры, барометры.

Различают два метода геодезических измерений: непосредственные и посредственные (косвенные).

Непосредственные – измерения, при которых определяемые величины получают в результате непосредственного сравнения с единицей измерения.

Косвенные – измерения, при которых определяемые величины получаются как функции других непосредственно измеренных величин.

Процесс измерения включает:

Объект – свойства которого, например, размер характеризуют результат измерения.

Техническое средство – получать результат в заданных единицах.

Метод измерений – обусловлен теорией практических действий и приёмов технических средств.

Исполнитель измерений – регистрирующее устройство

Внешняя среда, в которой происходит процесс измерений.

Измерения различают равноточные и неравноточные. Равноточные – это результаты измерений однородных величин, выполняемые с помощью приборов одного класса, одним и тем же методом, одним исполнителем при одних и тех же условиях. Если хотя бы один из элементов, составляющий совокупность, меняется, то результат измерений неравноточный.


3.2 Классификация погрешностей геодезических измерений. Средняя квадратическая погрешность. Формы Гаусса и Бесселя для её вычисления


Геодезические измерения, выполняемые даже в очень хороших условиях, сопровождаются погрешностями, т.е. отклонение результата измерений L от истинного значения Х нумеруемой величины:


∆ = L-X


Истинное – такое значение измеряемой величины, которое идеальным образом отражало бы количественные свойства объекта. Недостижимое условие – истинное значение – понятие гипотетическое. Это величина, к которой можно приближаться бесконечно близко, оно не достижимо.

Точность измерений – степень приближения его результата к истинному значению. Чем ниже погрешность, тем выше точность.

Абсолютная погрешность выражается разностью значения, полученного в результате измерения и истинного измерения величины. Например, истинное значение l = 100 м, однако, при измерении этой же линии получен результат 100,05 м, тогда абсолютная погрешность:


E = XизмX

E = 100,05 – 100 = 0,05 (м)


Чтобы получить значение достаточно произвести одно измерение. Его называют необходимым, но чаще одним измерением не ограничиваются, а повторяют не менее двух раз. Измерения, которые делают сверх необходимого, называют избыточными (добавочными), они являются весьма важным средством контроля результата измерения.

Абсолютная погрешность не даёт представления о точности полученного результата. Например, погрешность в 0,06 м может быть получена при измерении l = 100 м или l = 1000 м. Поэтому вычисляют относительную погрешность:


C = Eср / X


C = 0,06 / 100 = 1/1667, т.е на 1667 м измеряемой l допущена погрешность в 1 метр.

Относительная погрешность – отношение абсолютной погрешности к истинному или измеренному значению. Выражают дробью. По инструкции линия местности должна быть измерена не грубее 1/1000.

Погрешности, происходящие от отдельных факторов, называются элементарными. Погрешность обобщенная – это сумма элементарных.

Возникают:

грубые (Q),

систематические (O),

случайные (∆).

Грубые погрешности измерений возникают в результате грубых промахов, просчётов исполнителя, его невнимательности, незамеченных неисправностях технических средств. Грубые погрешности совершенно недопустимы и должны быть полностью исключены из результатов измерений путем проведения повторных, дополнительных измерений.

Систематические погрешности измерений – постоянная составляющая, связанная с дефектами: зрение, неисправность технических средств, температура. Систематические погрешности могут быть как одностороннего действия, так и переменного (периодические погрешности). Их стремятся по возможности учесть или исключить из результатов измерений при организации и проведении работ.

Случайные погрешности измерений неизбежно сопутствуют всем измерениям. Погрешности случайные исключить нельзя, но можно ослабить их влияние на искомый результат за счет проведения дополнительных измерений. Это самые коварные погрешности, сопутствующие всем измерениям. Могут быть разные как по величине, так и по знаку.


E = Q + O +∆


Если грубые и систематические погрешности могут быть изучены и исключены из результата измерений, то случайные могут быть учтены на основе глубокого измерения. Изучение на основе теории вероятностей.

На практике сложность заключается в том, что измерения проводятся какое-то ограниченное количество раз и поэтому для оценки точности измерений используют приближённую оценку среднего квадратического отклонения, которую называют среднеквадратической погрешностью (СКП).

Гауссом была предложена формула среднеквадратической погрешности:


∆2ср = (∆21 + ∆22 +… +∆2n) / n,

∆2 = m2 = (∆21 + ∆22 +… +∆2n) / n,

∆ = m,

ср = m = √(∑∆2i / n)


Формула применяется, когда погрешности вычислены по истинным значениям.

Формула Бесселя:


m = √(∑V2i / (n-1))


Средняя квадратическая погрешность арифметической середины в Цn раз меньше средней квадратической погрешности отдельного измерения


М=m/Цn


При оценке в качестве единицы меры точности используют среднеквадратическую погрешность с весом равным единице. Её называют средней квадратической погрешностью единицы веса.

µ2 = PЧm2 – µ = m√P, m = µ / √P, т.е. средняя квадратическая погрешность любого результата измерения равна погрешности измерения с весом 1 (µ) и делённая на корень квадратный из веса этого результата (P).

При достаточно большом числе измерений можно записать ∑m2P=∑∆2P (так как ∆ = m):

µ = √(∑(∆2ЧP)/n), т.е. средняя квадратическая погрешность измерения с весом, равным 1 равна корню квадратному из дроби в числителе которого сумма произведений квадратов абсолютных погрешностей неравноточных измерений на их веса, а в знаменателе – число неравноточных измерений.

Средняя квадратическая погрешность общей арифметической середины по формуле:


M0 = µ / √∑P

Подставив вместо µ её значение получим :


M0 = √(∑∆2ЧP/n) / (√∑P) = √[(∑∆2ЧP) / nЧ(∑P)]


M0 = √[ (∆12P1 + ∆22P2 +… + ∆n2Pn) / nЧ(P1 + P2 + … + Pn) ] – формула Гаусса, средняя квадратическая погрешность общей арифметической середины равна корню квадратному из дроби, в числителе которой сумма произведений квадратов погрешностей неравноточных измерений на их веса, а знаменатель – произведение количества измерений на сумму их весов.

µ = √ [∑( V2ЧP ) / (n-1)] Это формула Бесселя для вычисления средней арифметической погрешности с измерением веса, равным 1 для ряда неравноточных измерений по их вероятнейшим погрешностям. Она справедлива для большого ряда измерений, а для ограниченного (часто на практике) содержит погрешности: mµ = µ / [2Ч(n-1)] – это надёжность оценки µ.

Контрольная задача 1

Для исследования теодолита им был многократно измерен один и тот же угол. Результаты оказались следующими: 39˚17.4'; 39˚16.8'; 39˚16.6'; 39˚16.2'; 39˚15.5'; 39˚15.8'; 39˚16.3'; 39˚16.2'. Тот же угол был измерен высокоточным угломерным прибором, что дало результат 39˚16'42". Приняв это значение за точное, вычислить среднюю квадратическую погрешность, определить надёжность СКП, найти предельную погрешность.


Решение:

№ измерения Результаты измерений, l

Погрешности

∆ = l-X

∆2
1 39˚17.4' +0.7' 0.49
2 16.8 +0.1 0.01
3 16.6 -0.1 0.01
4 16.2 -0.5 0.25
5 15.5 -1.2 1.44
6 15.8 -0.9 0.81
7 16.3 -0.4 0.16
8 16.2 -0.5 0.25
Сумма

3.42

39˚16'42" = 39˚16.7'

Средняя квадратическая погрешность: m = √([∆2]/n),

m = √(3.42/8) = 0.65'.

Оценка надёжности СКП: mm = m / √2n,

mm = 0.65 / √16=0.1625≈0.16'.

Предельная погрешность: пр = 3Чm,

∆пр = 3Ч0.65' = 1.96'

Контрольная задача 2

Дана совокупность невязок треугольников триангуляции объёмом 50 единиц. Считая невязки истинными погрешностями, вычислить среднюю квадратическую погрешность и произвести надёжность СКП, вычислить предельную погрешность. На данной совокупности проверить свойство случайных погрешностей:

Lim[∆] / n =0, для чего вычислить W = [W] / n.


N W N W N W N W N W
1 +1,02 11 -1,72 21 -0,90 31 +2,80 41 -0,44
2 +0,41 12 +1,29 22 +1,22 32 -0,81 42 -0,28
3 +0,02 13 -1,81 23 -1,84 33 +1,04 43 -0,75
4 -1,88 14 -0,08 24 -0,44 34 +0,42 44 -0,80
5 -1,44 15 -0,50 25 +0,18 35 +0,68 45 -0,95
6 -0,25 16 -1,89 26 -0,08 36 +0,55 46 -0,58
7 +0,12 17 +0,72 27 -1,11 37 +0,22 47 +1,60
8 +0,22 18 +0,24 28 +2,51 38 +1,67 48 +1,85
9 -1,05 19 -0,13 29 -1,16 39 +0,11 49 +2,22
10 +0,56 20 +0,59 30 +1,65 40 +2,08 50 -2,59

Решение:


W = [W] / n, W = +2,51 / 50 = 0,05

Среднюю квадратическую погрешность в данном случае целесообразно вычислять по формуле: m = √( [W2] – [W]2/n ) ч (n-1),

m = √( 76,5703 – (2,512)/50) ч 49 = 1,249

Оценку надёжности СКП по формуле: mm = m / √2(n-1),

mm = 1,249/ √(2Ч49) = 0,13.

Предельная погрешность по формуле: пр = 3Чm,

∆пр = 3Ч1,249= 3,747.

Контрольная задача 5

Определить СКП расстояния вычисленного по формуле


S = √(x2 – x1)2 + (y2 – y1)2


если x2 = 6 068 740 м; y2 = 431 295 м;

x1 = 6 068 500 м; y2 = 431 248 м;

mх = my = 0,1 м.

Решение:

S =√(6 068 740 - 6 068 500 )2 + (431 295 - 431 248)2 =235,36

mm = 0,1/ √4 = 0,05

Контрольная задача 6

Один и тот же угол измерен 5 раз с результатами: 60˚41'; 60˚40'; 60˚40'; 60˚42'; 60˚41'. Произвести математическую обработку этого ряда результатов измерений.


Решение:

Nп/п l, ˚ ε, ' v, ' v2, '
1 60˚41' 1 -0,2 0,04
2 60˚40' 0 +0,8 0,64
3 60˚40' 0 +0,8 0,64
4 60˚42' 2 -1,2 1,44
5 60˚41' 1 -0,2 0,04
Сумма
4 0 2,8

l0 – минимальное значение измеряемой величины, l0 = 60˚40' ; ε – остаток, полученный как ε = l1 - l0 ; L – наилучшее значение измеряемой величины,

L = [l]/n; m = √([ v2]/(n – 1), где v-уклонение от арифметического среднего. М – оценка точности среднего арифметического значения, М = m/√n.

L = 60˚40' + 4/5 = 60˚40,8'

m = √2,8 / 4 = 0,7'

М = 0,7'/√5 = 0,313'

Контрольная задача 7

Произвести математическую обработку результатов измерения планиметром площади одного и того же контура: 26,31; 26,28; 26,32; 26,26; 26,31 га.


Решение:

Nп/п l, га ε, га v, га v2, га
1 26,31 0,05 -0,014 0,000196
2 26,28 0,02 +0,016 0,000256
3 26,32 0,06 -0,024 0,000576
4 26,26 0 0,036 0,001296
5 26,31 0,05 -0,014 0,000576
Сумма
0,18 0 0,0029

l0 = 26,26

L = 26,26 + 0,18/5 = 26,296 га

m = √0,0029/ 4 = 0,0269 га

М = 0,0269/√5 = 0,01204 га

Контрольная задача 8

При исследовании сантиметровых делений нивелирной рейки с помощью женевской линейки определялась температура в момент взятия отчета. Для пяти сантиметровых отрезков получены значения: 20,3˚; 19,9˚; 20,1˚; 20,2˚; 20,3˚. Провести математическую обработку результатов измерения.


Решение:

Nп/п l, ˚ ε, ˚ v, ˚ v2, ˚
1 20,3 0,4 -0,14 0,0196
2 19,9 0 -0,26 0,0676
3 20,1 0,2 -0,06 0,0036
4 20,2 0,3 0,04 0,0024
5 20,3 0,4 0,14 0,0196
Сумма
1,3 0 0,1128

l0 = 19,9

L = 19,9 + 1,3/5 = 20,16˚

m = √0,1128/ 4 = 0,168˚

М = 0,168/√5 = 0,075˚


3.3 Веса измерений


Вес измерения – это отвлеченное число, обратно пропорциональное квадрату СКП результата измерения.

Формула веса:


P = К / m2,


где P – вес результата измерения,

К – произвольное постоянное число для данного ряда измерений,

m – СКП результата измерения.

Из формулы видно, что чем меньше СКП измерения, тем оно точнее и его вес больше.

Отношение весов двух измерений обратнопропорционально квадратам СКП этих измерений, т.е.:

P1 / P2 = m22 / m12


Если имеется ряд измерений l1, l2, …, ln, то очевидно, что вес одного измерения будет меньше веса среднего арифметического этих значений, т.е.:


Pm < PM,


где m – погрешность одного измерения,

M – погрешность среднего арифметического значения.

Тогда отношение весов обратнопропорционально отношению квадратов СКП:


PM/Pm = m2/M2;M = m/√n;

PM/Pm = m2/ (m/√n) 2 = m2/ (m2/n) = m2Чn/m2 = n.


Таким образом, вес среднего арифметического значения больше отдельно взятого значения в n раз. Следовательно, вес арифметической середины равен числу измерений, из которых она составлена.

Общая арифметическая середина из неравноточных измерений равна дроби, в числителе которой – сумма произведений средних арифметических значений из результатов измерений на их веса, а знаменатель – сумма всех весов измерений. Следовательно, вес общей арифметической середины равен сумме весов неравноточных измерений:


A0 = (a1P1 + a2P2 + … + anPn) / (P1 + P2 + … +Pn),


где A0 – общая арифметическая середина,

ai – результат отдельно взятого измерения,

Pi – вес отдельно взятого измерения.

СКП любого результата измерения равна погрешности измерения с весом 1, делимой на корень квадратный из веса этого результата, т.е.:


m = M/√P,


где m – СКП любого результата измерения;

M – погрешность измерения с весом 1;

P – вес данного результата измерения.

СКП измерения с весом 1 равна корню квадратному из дроби, в числителе которой – сумма произведений квадратов абсолютных погрешностей неравноточных измерений на их веса, а в знаменателе – число неравноточных измерений.


M = √ (∑∆2P/n),


где ∆ - абсолютная погрешность неравноточного измерения;

P –его вес;

n – число измерений.

Контрольная задача 9

Результатам измерения углов соответствуют m1 = 0,5; m2 = 0,7; m3 = 1,0. Вычислить веса результатов измерений.

Решение:


P = К / m2;

P1 = 1 / (0,5)2 = 4;

P1 = 1 / (0,7)2 = 2,04;

P1 = 1 / (1,0)2 = 1.


Ответ: 4; 2,04; 1.

Контрольная задача 11

Найти вес невязки в сумме углов треугольника, если все углы измерены равноточно.

Решение:


m = √[V2] / (n-1), n = 3

P = К / m2

m = √[ V21 + V22+ V23]/(3 – 1) = √[ V21 + V22+ V23]/2

P = К / √[ V21 + V22+ V23]/2 = 2 К / √[ V21 + V22+ V23] = 2/ ∑ V2i


3.4 Функции по результатам измерений и оценка их точности


В практике геодезических работ искомые величины часто получают в результате вычислений, как функцию измеренных величин. Полученные при этом величины (результаты) будут содержать погрешности, которые зависят от вида функции и от погрешности аргументов по которым их вычисляют.

При многократном измерении одной и той же величины получим ряд аналогичных соотношений:


∆U1 = k∆l1

∆U2 = k∆l2

…………..

∆Un = k∆ln


Возведём в квадрат обе части всех равенств и сумму разделим на n:


(∆U12 + ∆U22 + … + ∆Un2) / n = k2Ч(∆l12 + ∆l22 + ... + ∆ln2) / n;

∑∆U2 / n = k2Ч(∑∆l2 / n);

m = √(∑∆U2 / n);

m2 = k2 Ч ml2,


где ml – СКП дальномерного отсчёта.

m = k Ч ml.


СКП функции произведения постоянной величины на аргумент равна произведению постоянной величины на СКП аргумента.

Функция вида U = l1 + l2

Определить СКП U, где l1 и l2 – независимые слагаемые со случайными погрешностями ∆l1 и ∆l2. Тогда сумма U будет содержать погрешность:


∆U = ∆l1 + ∆l2.


Если каждую величину слагаемого измерить n раз, то можно представить:

∆U1 = ∆l1' + ∆l2' – 1-е измерение,

∆U2 = ∆l1" + ∆l2" – 2-е измерение,

…………………

∆Un = ∆l1(n) + ∆l2(n) – n-е измерение.

После возведения в квадрат обеих частей каждого равенства почленно их сложим и разделим на n:


∑∆U2 / n = (∑∆l12)/n + 2Ч(∑∆l1Ч∆l2)/n + (∑∆l22)/n.


Так как в удвоенном произведении ∆l1 и ∆l2 имеют разные знаки, они компенсируются и делим на бесконечно большое число n, то можно пренебречь удвоенным произведением.


mU2 = ml12 + ml22;

mU = √( ml12 + ml22 ).


СКП суммы двух измеренных величин равна корню квадратному из суммы квадратов СКП слагаемых.

Если слагаемые имеют одинаковую СКП, то:


ml1 = ml2 = m;

mU = √(m2 + m2) = √2m2 = m√2.


В общем случае:


mU = m√n,


где n – количество аргументов l.

Функция вида U = l1 - l2


mU = m√n;

mU = √( ml12 + ml22).


СКП разности двух измерений величин равна корню квадратному из суммы квадратов СКП уменьшаемого и вычитаемого.

Функция вида U = l1 - l2 + l3


mU = √( ml12 + ml22 + ml32…)


СКП суммы n измеренных величин равна корню квадратному из суммы квадратов СКП всех слагаемых.

Линейная функция вида U = k1l1 + k2l2 + … + knln


mU = √[ (k1ml1)2 + (k2ml2)2 + … + (knmln)2],


т.е. СКП алгебраической суммы произведений постоянной величины на аргумент равна корню квадратному из суммы квадратов произведений постоянной величины на СКП соответствующего аргумента.

Функция общего вида U = ƒ( l1, l2, …, ln)

Это наиболее общий случай математической зависимости, включающий все рассматриваемые выше функции, являющиеся частным случаем. Это значит, что аргументы l1, l2, …, ln могут быть заданы любыми уравнениями. Для определения СКП такой сложной функции необходимо проделать следующее:

1. Найти полный дифференциал функции:


dU = (dƒ/dl1)Чdl1 + (dƒ/dl2)Чdl2 + … + (dƒ/dln)Чdln,


где (dƒ/dl1), (dƒ/dl2), …,(dƒ/dln) – частные производные функции по каждому из аргументов.

2. Заменить дифференциалы квадратами соответствующих СКП, вводя в квадрат коэффициенты при этих дифференциалах:

mU2 = (dƒ/dl1)2Чml12 + (dƒ/dl2)2Чml22 + … +(dƒ/dln)2Чmln2.

3. Вычислить значения частных производных по значениям аргументов:


(dƒ/dl1), (dƒ/dl2), …,(dƒ/dln).


И тогда mU = √[ (dƒ/dl1)2Ч ml12 + (dƒ/dl2)2Чml22 + … +(dƒ/dln)2Чmln2].

СКП функции общего вида равна корню квадратному из суммы квадратов произведений частных производных по каждому аргументу на СКП соответствующего аргумента.


3.5 Оценка точности по разностям двойных измерений и по невязкам в полигонах и ходах.


В практике геодезических работ часто одну и ту же величину измеряют дважды. Например, стороны теодолитного хода в прямом и обратном направлении, углы двумя полуприемами, превышения – по черной и красной стороне вех. Чем точнее произведены измерения, тем лучше сходимость результатов в каждой паре.


mlср. = Ѕ √∑d2/n


где d – разности в каждой паре; n – количество разностей.

Формула Бесселя:


mlср = Ѕ √∑d2/n-1


Если измерения должны удовлетворять какому-либо геометрическому условию, например, сумма внутренних углов треугольника должна быть 180˚, то точность измерений можно определить по невязкам получающимся в результате погрешностей измерений.


μ=√∑ [f2 /n]/N,


где - СКП одного угла;

f – невязка в полигоне;

N – количество полигонов;

n – количество углов в полигоне.


4. Определение дополнительных пунктов


4.1 Цель и методы определения дополнительных пунктов


Дополнительные пункты определяются наряду со съемочной сетью в основном для сгущения существующей геодезической сети пунктами съемочного обоснования. Они строятся прямыми, обратными, комбинированными, а при наличии электронных дальномеров – линейными засечками и лучевым методом.

В некоторых случаях дополнительный пункт определяется передачей (снесением) координат с вершины знака на землю.


4.2 Передача координат с вершины знака на землю. (Решение примера)


При производстве топографо-геодезических работ в городских условиях невозможно бывает установить теодолит на пункте геодезической сети (пунктом является церковь, антенна и т.п.). Тогда и возникает задача по снесению координат пункта триангуляции на землю для обеспечения производства геодезических работ на данной территории.

Исходные данные: пункт A с координатами XA, YA; пункты геодезической сети B (XB, YB) и C (XC, YC).

Полевые измерения: линейные измерения выбранных базисов b1 и b'1; измерения горизонтальных углов Я1 , Я'1 , Я2 , Я'2 ; б , б'.

Требуется найти координаты точки P – XP, YP.

Решение задачи разделяется на следующие этапы:

Решение числового примера


Исходные данные

Обозначе-

ния

А

ХА, YА

B

ХB, YB

C

ХC, YC

β1

β2

β2

β2`

β1

β1`

б

б‘

Численные значения 6327,46 8961,24 5604,18 266,12 38o26'00" 70o08'54" 138o33'49"

27351,48 25777,06 22125,76 198,38 42˚26'36" 87˚28'00" 71˚55'02"

Вычисление расстояния DАР

Обозначе-

ния

B1

B2

sinβ2

sinβ‘2

sin(β1+β2 )

sin(β‘1+β‘2)

B1 sinβ2

B2 sinβ‘2

D1

D2

D1 -D2

2D/T

Dср
Численные значения 266,12 0,62160 0,94788 165,420 174,52

0,00


174,52

198,38 0,67482 0,76705 133,871 174,52


Решение обратных задач

Обозначения

YB

ХB

ХА

YC

ХC

ХА

tgαAB

αAB

tgαAC

αAC

sinα AB

sinα AC

cos αAB

cosαAC

S AB

S AC

Численные значения 10777,06 8961,24 7125,76 5605,08 -0,5977 7,23421

-0,51309

-0,99058

0,85833

-0,13693

3068,48

12351,48 6327,46 12351,48 6327,46 329˚07'55" 262o07'51"
5275,51

Вычисление дирекционных углов αАР = αD

Обозна-

чения

D

sinб

sinб'

S AB

S AC

sin ψ

sin ψ'

ψ

ψ'

φ

φ'

αAB

αAC

αD

α'D

αD-α'D

хmЯ

Численные значения 174,52 0,66179 3068,48 0,03950 2o15'50" 39o10'41" 329o07'55" 8o18'36" ∆α=1'30"


0,95061 5275,51 0,03292 1o53'13" 106o11'46" 262o07'51" 8o18'37"

sin ψ = DЧsinб/ S AB; sin =174,52Ч0,66179/3068,48=0,03950;

sin ψ' = DЧsinб'/ S AС; sin `=174,52Ч0,95061/5275,51=0,03292;

ψ = arcsin 0,03950 =2 o15` 50``;

ψ'= arcsin 0,03292=1 o53` 13``;

φ = 180 o – (б+ ψ) = 180 o – (138o33` 49``+2 o15` 50``) = 39o10` 41``

φ`= 180 o – (б`+ ψ` ) = 180 o – (71o55` 02``+1 o53` 13``) = 106 o11` 46``

αD = αAB ± φ =329o07` 55``+ 39o10` 41``= 8o18` 36``

αD`= αAC ± φ`=262o07` 51``+ 106 o11` 46``= 8o18` 37``


Контроль:


(αD – α'D) хmβ;


где mβ –СКП измерения горизонтальных углов.

Знак «+» или «-» в формулах вычисления дирекционного угла берется в зависимости от взаимного расположения пунктов А, Р, В и С.

(8o18` 36``-8o18` 37``) ≤ 30``

0o00` 01`` ≤ 30``


Решение прямых задач (вычисление координат т.Р)

Обозначения

αD

αD'


sinαD

sinαD'


cosαD

cosαD'


DcosαD

DcosαD'


DsinαD

Dsinα'D


∆Х - ∆Х'

∆Y - ∆Y'


ХА

Хp = ХА+ ∆Х

Х'p = ХА+ ∆Х'

Yp = YА+ ∆Y

Y'p = YА+ ∆Y'

Численные значения 8o18'36" 0,14453 0,98950 172,69 25,22

∆=00,00

∆=00,00

∆доп=25см

6327,46 6500,15

8o18'37" 0,14454 0,98950 172,69 25,22
12351,48 12376,70

Хp = ХА+ ∆Х,Yp = YА+ ∆Y,

Х'p = ХА+ ∆Х',Y'p = YА+ ∆Y'.

∆Х= DcosαD,∆Y= DsinαD,

∆Х'= Dcosα'D,∆Y'=Dsinα'D.


Расхождение координат не должно превышать величины хmЯЧp, где p=206265", mЯ – средняя квадратическая погрешность измерения угла.

Оценка точности определения положения пункта P.

Средняя квадратическая погрешность определения отдельного пункта вычисляется по формуле:


M2p = m2X +m2Y,M2p = m2D +(DЧmα / P)2


где mD- определяется точностью линейных измерений, а m α – точностью угловых измерений.

Пример: mD =2см, mα= 5``, тогда


Mp =√ [(0,02) 2+(170Ч5/2Ч105)2] ≈ 2Ч10-2 = 0,02м.


4.3 Решение прямой и обратной засечки (по варианту задания)


Определение координат пункта прямой засечкой (формулы Юнга).

Для однократной засечки необходимо иметь два твёрдых пункта. Контроль определения осуществляется вторичной засечкой с третьего твёрдого пункта.

Исходные данные: твердые пункты А(ХАYА); B(ХBYB); С(ХСYС).

Полевые измерения: горизонтальные углы β1, β 2, β`1, β`2.

Определяется пункт P.

Формулы для решения задачи:


Хp -ХА=((ХB-ХА) ctg β 1+(YB-YА))/ (ctg β 1+ ctg β 2);

Хp= ХА+∆ХА;

Yp -YА=((YB-YА) ctg β 1+(ХB-ХА))/ (ctg β 1+ ctg β 2); Yp= YА+∆YА;

Оценка точности определения пункта P.

Вычисление СКП из 1-го и 2-го определения:


M1 =(mβЧ√(S12+ S22))/pЧsinγ1;

M2 =(mβЧ√(S12+ S22))/pЧsinγ2;


Значения величин, входящих в приведённые формулы следующие:

mβ =5``, p=206265``; γ=73˚15,9`; γ=62˚55,7`; S1=1686,77 м; S2=1639,80 м; S3=2096,62 м.

Стороны засечки найдены из решения обратных задач.


M1 = (5``Ч√2,86+2,69)/(2Ч105Ч0,958)=0,06м.

M2 = (5``Ч√2,69+4,41)/(2Ч105Ч0,890)=0,07м.

Mr = √ (M12 +M22); Mr =√ [(0,06) 2+(0,07) 2]=0,09м.


Расхождение между координатами из двух определений

r = √ [( Хp- Х`p) 2+( Yp- Y`p) 2] не должно превышать величины 3 Mr;

r =√ [(2833,82-2833,82) 2+(2116,38-2116,32) 2]=√0,0036=0,06м.

На основании неравенства r =0,06м 3Ч0,09м логично сделать вывод о качественном определении пункта P.

За окончательные значения координат принимают среднее из двух определений.


Решение числового примера

β1


β2

XB

XA

ctg β1

ctg β2

(XB- XA)ctg β1

YB

YA

∆ XA

XP = XA+∆XA

(YB-YA)ctgβ1


∆ YA

YP=YA+∆YA


XB- XA
YB-YA




ctg β1 + ctg β2



52˚16.7'


52˚27.4'

1630.16

1380.25

0.77349

Основы геодезических измерений0.71443

193.30

1.48792

3230.00

1260.50

1453.57

2833.82

1523.39

855.88

2116.38


+249.91
+1969.50



β'1


β'2

XC

XB

ctg β'1

ctg β'2

(XC- XB)ctg β'1

YC

YB

∆ XB

XP = XA+∆XA

(YC-YB)ctgβ'1


∆ YB

YP=YA+∆YA


XC- XB
YC-YB




ctg β'1 + ctg β'2



69˚48.5'


52˚27.4'

3401.04

1630.16

0.36777

0.92402

Основы геодезических измерений651.28

1.29175

4133.41

3230.00

1203.56

2833.82

332.24

-1113.68

2116.32


+1770.88
+903.41


Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: