Исследование операций

Министерство общего и профессионального образования РФ

Южно-Уральский Государственный Университет

Кафедра «Системы управления»


КУРСОВАЯ РАБОТА

ПО ИССЛЕДОВАНИЮ ОПЕРАЦИЙ

Вариант 14


Группа ПС-317

Выполнил: Родионова Е.В.

Проверил: Плотникова Н.В.


Челябинск, 2004

Содержание


Задача 1 2

Задача 2 4

Задача 3 6

Задача 4 8

Задача 1


№14

Условие:

Нефтеперерабатывающий завод получает 4 полуфабриката: x1 тыс. л. алкилата, x2 тыс. л. крекинг-бензина, x3 тыс. л. бензина прямой перегонки и x4 тыс. л. изопентана. В результате смешивания этих четырех компонентов в разных пропорциях образуется три сорта авиационного бензина: бензин А (а1:а2:а3:а4), бензин В (b1:b2:b3:b4) и бензин С (с1:с2:с3:с4).

Стоимость 1 тыс. л. бензина каждого сорта равна y1 руб., y2 руб. и y3 руб.

Определить соотношение компонентов, при котором будет достигнута максимальная стоимость всей продукции.


№ вар. x1 x2 x3 x4 y1 y2 y3 а1 а2 а3 а4 b1 b2
1 400 250 350 100 120 100 150 2 3 5 2 3 1

№ вар. b1 b2 c1 c2 c3 c4
1 2 1 2 2 1 3

Решение:

Составим математическую модель задачи.

Обозначим через t1 количество бензина А;

через t2 количество бензина В;

через t3 количество бензина С.

Тогда, целевая функция будет

L=y1t1+ y2t2+ y3t3=120t1+100t2+150t3 →max

Система ограничений:

Исследование операций

Приведем систему ограничений к виду основной задачи линейного программирования (введем новые переменные t4 , t5 ,t6 ,t7, которые входят в целевую функцию с нулевыми коэффициентами):

Исследование операций

Выберем t1 , t2 ,t3 свободными переменными, а t4 , t5 ,t6 ,t7 – базисными и приведем к стандартному виду для решения с помощью симплекс-таблицы:

Исследование операций

L=0-(-120t1-100t2-150t3)

Составим симплекс-таблицу.

Это решение опорное, т.к. все свободные члены положительны.

Т. к. все коэффициенты в целевой функции отрицательные, то можно взять любой столбец разрешающим (пусть t1). Выберем в качестве разрешающего элемента тот, для которого отношение к нему свободного члена будет минимально (это t7)



b t1 t2 t3
L 0
-120
-100
-150



6000
60
60
180
t4 400
2
3
2
400/2=200


-100
-1
-1
-3
t5 250
3
1
2
250/3=83,3


-150
-1,5
-1,5
-4,5
t6 350
5
2
1
350/5=70


-250
-2,5
-2,5
-7,5
t7 100
2
1
3
100/2=50


50
0,5
0,5
1,5

Далее меняем t2 и t1 .



b t7 t2 t3
L 6000
60
-40
30



4000
40
80
120
t4 300
-1
2
-1
300/2=150


-200
-2
-4
-6
t5 100
-1,5
-0,5
-2,5



50
0,5
1
-4,5
t6 50
-2,5
-0,5
-6,5



50
0,5
1
-7,5
t1 50
0,5
0,5
1,5
50/0,5=100


100
1
2
1,5


b t7 t1 t3
L 10000
100
80
150









t4 100
-3
-4
-7









t5 150
-1
1
-1









t6 100
-2
1
-5









t2 100
1
2
3










Т.к. коэффициенты при переменных в целевой функции положительны, следовательно, это оптимальное решение.

Таким образом, t1 = t3 =0; t2=100; L=10000.

Т.е. для получения максимальной прибыли следует производить только бензин В (100 тыс. л.), при этом выручка составит 10000 руб.

ОТВЕТ: для получения максимальной прибыли следует производить только бензин В (100 тыс. л.), при этом выручка составит 10000 руб.

Задача 2


№34

Условие:

С помощью симплекс–таблиц найти решение задачи линейного программирования: определить экстремальное значение целевой функции Q=CTx при условии Ax і ЈB,

где CT = [ c1 c2 . . . c6 ]T , ВT = [ b1 b2 . . . b6 ]T ,

XT = [ x1 x2 . . . x6]T , А= [aij] (i=1,6; j=1,3).


№ вар. с1 с2 с3 с4 с5 с6 b1 b2 b3 Знаки ограничений a11 a12 a13 a14










1 2 3



34 3 3 1 1 0 0 4 4 15 = = = 2 0 3 1
№ вар. a15 a16 a21 a22 a23 a24 a25 a26 a31 a32 a33 a34 a35 a36 Тип экстрем.
















34 0 0 1 0 –1 2 3 0 3 3 6 3 6 0 max

Решение:


Исходная система:

Исследование операций

Целевая функция Q= x1+3x2+x3+3x5.

Пусть х3, х4 – свободные переменные, х1, х2, х5 – базисные.

Приведем систему и целевую функцию к стандартному виду, для построения симплекс-таблицы:

Исследование операций

Q=9 - (9/2x3-1/2x4)

Составим симплекс-таблицу:



b x3 x4
Q 9
9/2
-1/2



2/3
-5/6
1
x1 2
3/2
1/2
2/0,5=4


-2/3
5/6
-1
x2 7/3
4/3
0



0
0
0
x5 2/3
-5/6
1/2
2/3 : 1/2=4/3


4/3
-5/3
2

Это опорное решение, т.к. свободные члены положительны.

Т.к. коэффициент при х4 отрицательный, то это и будет разрешающий столбец. В качестве разрешающего элемента тот, для которого отношение к нему свободного члена будет минимально (это х5).



b x3 x5
Q 29/3
11/3
1







x1 4/3
2/3
-1







x2 7/3
4/3
0







x4 4/3
-5/3
2








Т.к. коэффициенты при переменных в целевой функции положительны, следовательно, это оптимальное решение.

Т. о. Q=29/3

x3=x5=0; x1=4/3; x2=7/3; x4=4/3.


ОТВЕТ: Q=29/3ж

x3=x5=0; x1=4/3; x2=7/3; x4=4/3.

Задача 3


№14

Условие:

Решение транспортной задачи:

1. Записать условия задачи в матричной форме.

2. Определить опорный план задачи.

3. Определить оптимальный план задачи.

4. Проверить решение задачи методом потенциалов.


№вар. а1 а2 а3 b1 b2 b3 b4 b5 с11 с12 с13
14 90 50 30 15 45 45 50 15 45 60 40
с14 с15 с21 с22 с23 с24 с25 с31 с32 с33 с34 с35
60 95 35 30 55 30 40 50 40 35 30 100

Решение:

Составим таблицу транспортной задачи и заполним ее методом северо-западного угла:



B1 B2 B3 B4 B5 a
A1
45
60
40
60
95 90

15
45
30





A2
35
30
55
30
40 50





15
35



A3
50
40
35
30
100 30







15
15

b 15 45 45 50 15 170

Это будет опорный план.

Количество заполненных ячеек r=m+n-1=6.

Рассмотрим цикл (1,2)-(1,3)-(2,3)-(3,2):

с1,2+с2,3>c1.3+c3.2 (60+55>30+40)

Количество единиц товара, перемещаемых по циклу: min (с1,2 ; с2,3)=15

Рассмотрим цикл (2,4)-(2,5)-(3,5)-(3,4):

c2,4+с3,5>c2.5+c3.4 (30+40>30+100)

Количество единиц товара, перемещаемых по циклу: min (с2,4 ; с3,5)=15

В результате получится следующий план:



B1 B2 B3 B4 B5 a
A1
45
60
40
60
95 90

15
30
45





A2
35
30
55
30
40 50



15


20
15

A3
50
40
35
30
100 30







30



b 15 45 45 50 15 170

Больше циклов с «отрицательной ценой» нет, значит, это оптимальное решение.

Проверим методом потенциалов:

Примем α1=0, тогда βj = cij – αi (для заполненных клеток).

Если решение верное, то во всех пустых клетках таблицы Δij = cij – (αi+ βj) ≥ 0

Очевидно, что Δij =0 для заполненных клеток.

В результате получим следующую таблицу:



β1=45 β2=60 β3=40 β4=60 β5=70
α1=0
45
60
40
60
95 90

15
30
45
0
+

α2= -30
35
30
55
30
40 50

+
15
+
20
15

α3= -30
50
40
35
30
100 30

+
+
+
30
+


15 45 45 50 15 170

Δ1,4=0 показывает, что существует еще один цикл с такой же ценой (1,2)-(1,4)-(2,4)-(2,2). Но так как при этом общая стоимость не изменится, то нет смысла менять перевозки.

Таким образом, решение верное, т.к. Δij ≥0.


ОТВЕТ:



B1 B2 B3 B4 B5 a
A1
45
60
40
60
95 90

15
30
45





A2
35
30
55
30
40 50



15


20
15

A3
50
40
35
30
100 30







30



b 15 45 45 50 15 170

Задача 4


№59

Условие:

Определить экстремум целевой функции вида

F = c11x12+c22x22+c12x1x2+b1x1+b2x2

при условиях

a11x1+a12x2<=>p1

a21x1+a22x2<=>p2 .

Найти стационарную точку целевой функции и исследовать ее (функцию) на выпуклость (вогнутость) в окрестностях стационарной точки.

Составить функцию Лагранжа.

Получить систему неравенств в соответствии с теоремой Куна-Таккера.

Используя метод искусственных переменных составить симплекс-таблицу и найти решение полученной задачи линейного программирования.

Дать ответ с учетом условий дополняющей нежесткости.


b1 b2 c11 c12 c22 extr a11 a12 a21 a22 p1 p2

Знаки огр.

1 2

59 4.5 1.5 –5 –2 –1 max 2 –3 5 4 9 13 і і

Решение:

Целевая функция: F=-5x12-x22-2x1x2+4.5x1+1.5x2

Ограничения g1(x) и g2(x): Исследование операцийИсследование операций

определим относительный максимум функции, для этого определим стационарную точку (х10, х20):

Исследование операцийИсследование операцийИсследование операций

Исследуем стационарную точку на максимум, для чего определяем выпуклость или вогнутость функции

F11 (х10, х20) = -10 < 0

F12 (х10, х20) = -2

F21 (х10, х20) = -2

F22 (х10, х20) = -2

Исследование операций

Т.к. условие выполняется, то целевая функция является строго вогнутой в окрестности стационарной точки

3) Составляем функцию Лагранжа:

L(x,u)=F(x)+u1g1(x)+u2g2(x)=

=-5x12-x22-2x1x2+4.5x1+1.5x2+u1(2x1-3x2-9)+u2(5x1+4x2-13)

Получим уравнения седловой точки, применяя теорему Куна-Таккера:

Исследование операций i=1;2

Объединим неравенства в систему А, а равенства в систему В:

Система А:

Исследование операций

Система В:

Исследование операций

Перепишем систему А:

Исследование операций

4)Введем новые переменные

V={v1,v2}≥0; W={w1,w2}≥0

в систему А для того, чтобы неравенства превратить в равенства:

Исследование операций

Тогда

Исследование операций.

Следовательно, система В примет вид:

Исследование операций - это условия дополняющей нежесткости.

5) Решим систему А с помощью метода искусственных переменных.

Введем переменные Y={y1; y2} в 1 и 2 уравнения системы

Исследование операций

и создадим псевдоцелевую функцию Y=My1+My2→min

Y’=-Y= -My1-My2→max.

В качестве свободных выберем х1, х2, v1, v2, u1, u2;

а в качестве базисных y1, y2, w1, w2.

Приведем систему и целевую функцию к стандартному виду, для построения симплекс-таблицы:

Исследование операций

Исследование операций


Решим с помощью симплекс-таблицы. Найдем опорное решение:

Примечание: вычисления производились программно, см Приложение



b x1 x2 u1 u2 v1 v2
Y' -6M
-12M
-4M
-M
9M
M
M















y1 4,5
10
2
-2
-5
-1
0















y2 1,5
2
2
3
-4
0
-1















w1 -9
-2
3
0
0
0
0















w2 -13
-5
4
0
0
0
0































b w1 x2 u1 u2 v1 v2
Y' 48M
-6M
-22M
-1M
9M
1M
1M















y1 -40,5
5
17
-2
-5
-1
0















y2 -7,5
1
5
3
-4
0
-1















x1 4,5
-0,5
-1,5
0
0
0
0















w2 9,5
-2,5
-3,5
0
0
0
0































b w1 x2 y1 u2 v1 v2
Y' 68,25M -8,5M
-30,5M -0,5M
11,5M 1,5M
1M















u1 20,25
-2,5
-8,5
-0,5
2,5
0,5
0















y2 -68,25
8,5
30,5
1,5
-11,5
-1,5
-1















x1 4,5
-0,5
-1,5
0
0
0
0















w2 9,58
-2,5
-3,5
0
0
0
0































b w1 x2 y1 y2 v1 v2
Y' 0
0
0
M
M
0
0















u1 5,413043


























u2 5,934783


























x1 4,5



























w2 9,5




























Т. о, w1=x2=y1=y2=v1=v2=0; u1=5,413043; u2=5,934783; x1=4.5; w2=9.5.

б) Условия дополняющей нежесткости не выполняются (u2w2≠0), значит решения исходной задачи квадратичного программирования не существует.

ОТВЕТ: не существует.

Приложение


#include <math.h>

#include <stdio.h>

main()

{

int i,j,k,m;

double h,n,a[5][7],b[5][7];

clrscr();

printf ("Введите числа матрицы А ");

for (i=0; i<5; i++){for(j=0; j<7; j++) {scanf ("%lf",&n); a[i][j]=n;}}


printf ("Введите координаты разрешающего элементаn");

scanf("%d",&k) ;

scanf ("%d",&m);


printf (" матрицa A n");

for (i=0; i<5; i++)

{for(j=0; j<7; j++) printf (" %lf",a[i][j]);printf ("n");}

printf (" координаты n ");

printf("%d %d",k,m) ;


h=1/a[k][m];

b[k][m]=h;

printf ("n h=%lf",h);

for (i=0; i<7; i++)

{ if (i!=m) b[k][i]=a[k][i]*b[k][m]; }


for (i=0;i<5; i++)

{ if (i!=k) b[i][m]=-a[i][m]*b[k][m];}


for (i=0;i<5;i++)

{

for (j=0;j<7;j++)

if ((i!=k)&&(j!=m)) b[i][j]=a[i][j]+a[k][j]*b[i][m];

}

printf ("n результат ");

printf (" матрицa B n");

for (i=0; i<5; i++)

{for(j=0; j<7; j++) printf (" %lf",b[i][j]);printf ("n");}


getch();

}

Похожие рефераты: