Xreferat.com » Рефераты по информатике и программированию » Решение системы линейных уравнений

Решение системы линейных уравнений

Министерство образования и науки Республики Беларусь

Белорусский государственный университет

информатики и радиоэлектроники

Факультет информационных технологий и управления

Кафедра Вычислительных Методов и Программирования


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

по программированию

на тему:

«Решение системы линейных уравнений»


Выполнил: Принял:

ст.гр.020603 Навроцкий А.А.

Червоный А.В.


Минск 2001г.

Содержание


Введение.

Анализ существующих методов решения задачи.

Описание используемого метода.

Анализ результатов.

Вывод.

Список использованной литературы.

Приложение (распечатка программы, результатов).


Введение


Решение систем линейных алгебраических уравнений (СЛАУ) является одной из основных задач линейной алгебры. Эта задача имеет важное прикладное значение при решении научных и технических проблем. Кроме того, является вспомогательной при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований.

Применяемые на практике численные методы решения СЛАУ делятся на две группы - прямые и итерационные.

В прямых (или точных) методах решение системы получают за конечное число арифметических действий. К ним относятся известное правило Крамера нахождения решения с помощью определителей, метод последовательного исключения неизвестных (метод Гаусса) и его модификации, метод прогонки и другие. Сопоставление различных прямых методов проводится обычно по числу арифметический действий, необходимых для получения решения. Прямые методы являются универсальными и применяются для решения систем до порядка 103. Отметим, что вследствие погрешностей округления при решении задач на ЭВМ прямые методы на самом деле не приводят к точному решению системы.

Итерационные (или приближенные) методы являются бесконечными и находят решение системы как предел при k®Ґ последовательных приближений x(k), где k - номер итерации. Обычно задается точность e, и вычисления проводятся до тех пор, пока не будет выполнена оценка єx(k) – x(k-1) є< e. Число итераций n(e), которое необходимо провести для получения заданной точности, для многих методов можно найти из теоретических рассмотрений. Качество различных итерационных методов можно сравнивать по необходимому числу итераций n(e). Эти методы особенно предпочтительны для систем с матрицами специального вида - симметричными, трехдиагональными, ленточными и большими разреженными матрицами.

Выбор среды программирования.

После проведенного обзора программных средств мы выбрали среду программирования наиболее подходящую нам как очень удобное средство для разработки данного программного продукта. DELPHI 5.0 является наиболее выгодной нам средой программирования.


1. Анализ существующих методов решения задачи


Прямые методы решения СЛАУ. К прямым (или точным) методам решения СЛАУ относятся алгоритмы, которые в предположении, что вычисления ведутся без округлений, позволяют получить точное решение системы за конечное число арифметических действий. Чаще всего решение задач такими методами осуществляется поэтапно: на первом этапе систему преобразуют к тому или иному простому виду, на втором - решают упрощенную систему и получают значения неизвестных.

Запишем систему линейных алгебраических уравнений в развернутом виде:


Решение системы линейных уравнений


где x1, x2,..., xn - неизвестные величины, b1, b2,..., bn - элементы правой части. Если определитель системы отличен от нуля, то она имеет единственное решение. Для удобства дальнейших преобразований обозначим элементы правой части аi(n+1) и запишем расширенную матрицу размерами nґ(n+1), которая содержит всю информацию о системе:


A =Решение системы линейных уравнений.


С этой матрицей можно обращаться так же, как и с системой - переставлять строки, прибавлять кратное одной строки к другой, исключая неизвестные и приводя матрицу к треугольному или диагональному виду.

Приведем формальное описание схем некоторых прямых методов.

Метод Гаусса (схема единственного деления). Алгоритм метода состоит из двух этапов. Первый этап называется прямым ходом метода и заключается в последовательном исключении неизвестных из уравнений, т.е. в приведении матрицы А к верхнему треугольному виду (ниже главной диагонали все нули). Для этого на первом шаге разделим первое уравнение системы на а11 (предположим, что коэффициент а11 № 0, в противном случае осуществляем перестановку уравнений системы). Обозначим коэффициенты полученного приведенного уравнения Решение системы линейных уравнений, домножим его на коэффициент а21 и вычтем из второго уравнения системы, исключая тем самым х1 из второго уравнения (обнуляя коэффициент а12 матрицы). Поступим аналогично с остальными уравнениями и получим новую систему, матрица которой в первом столбце, кроме первого элемента, содержит только нули, т.е.


Решение системы линейных уравнений.


Первое уравнение в дальнейших преобразования не участвует. Описанный выше процесс исключения неизвестных применим к матрице Решение системы линейных уравнений размерами (n-1) n. После k аналогичных шагов получим k приведенных уравнений с коэффициентами


Решение системы линейных уравнений

и матрицу Решение системы линейных уравнений размерами (n - k) (n - k+1), элементы которой вычисляются по формулам


Решение системы линейных уравнений.


Элементы Решение системы линейных уравнений, на которые осуществляется деление, называются ведущими элементами метода Гаусса и не должны равняться нулю. Прямой ход метода Гаусса заканчивается после n шагов определением Решение системы линейных уравнений.

Обратный ход метода Гаусса заключается в последовательном определении компонент решения, начиная с хn и заканчивая х1, по следующим формулам:


Решение системы линейных уравнений


Метод Гаусса с выбором главного элемента. Метод заключается в том, что при прямом ходе в алгоритме метода Гаусса на каждом шаге исключения производится выбор наибольшего по модулю элемента в качестве ведущего. Этого достигают перестановкой строк или столбцов матрицы коэффициентов. Наиболее распространённой в вычислительной практике является стратегия выбора главного элемента столбца - нахождение максимального по модулю элемента k-го столбца матрицы Решение системы линейных уравнений и использование его в качестве ведущего элемента на k-м шаге исключения. В этом случае для невырожденных систем гарантируется, что ведущие элементы не равны нулю, и уменьшается погрешность при делении и последующем вычитании при преобразованиях. Рекомендуется также масштабировать предварительно каждое уравнение исходной системы, разделив на его наибольший по абсолютной величине коэффициент. Это делает рост элементов промежуточных матриц ограниченным.

Метод оптимального исключения. В целях экономии оперативной памяти (примерно в 4 раза) операции прямого и обратного хода метода Гаусса выполняются попеременно. На первом шаге после приведения первого уравнения исключается неизвестное x1 из второго уравнения, а затем с помощью приведенного второго уравнения - неизвестное x2 из первого. После (k-1) таких шагов матрица системы имеет вид


Решение системы линейных уравнений.


На k-м шаге, используя первые k уравнений, исключаем неизвестные x1,..,xk из (k+1)-го уравнения. Затем посредством этого уравнения исключается неизвестное xk+1 из первых k уравнений и т.д. В результате прямого хода матрица системы приводится к диагональному виду с единицами на главной диагонали. При этом отпадает необходимость обратного хода, поскольку столбец правой части приведенной матрицы Решение системы линейных уравнений и является вектором решения.

Метод Гаусса-Жордана. Эта модификация метода Гаусса незначительно отличается от метода оптимального исключения. Операции исключения переменных для каждого приводимого уравнения осуществляют не только ниже, но и выше главной диагонали. Операции с первым уравнением системы полностью аналогичны стандартной схеме. Второе уравнение системы после приведения и домножения на соответствующие коэффициенты вычитаем не только из третьего и последующих уравнений, но и из первого. В результате k таких шагов получаем матрицу


Решение системы линейных уравнений.


Как и в методе оптимального исключения, матрица системы приводится к диагональному виду и вектором решения является столбец Решение системы линейных уравнений.

LU - разложение. Матрицу A можно представить в виде произведения нижней треугольной матрицы (включая диагональ) L (lower) и верхней треугольной матрицы U ( upper ), т.е. A=LU. Это равенство равносильно n2 числовым равенствам


Решение системы линейных уравнений.


Разложение матрицы A на множители обычно получают посредством алгоритма, который называется компактной схемой метода Гаусса. Элементы lim и Umi могут быть вычислены по формулам


Решение системы линейных уравнений


Тогда решение системы Ax=b сводится к последовательному решению двух систем - Ly=b и Ux=y.

Рассмотренный метод можно применять к решению серии систем с одной и той же матрицей.

Метод простых итераций (Якоби).

Для решения итерационным методом система линейных алгебраических уравнений Ax = b должна быть приведена к виду x = Gx+f , где G - некоторая матрица, f - преобразованный вектор свободных членов. Затем выбирается начальное приближение - произвольный вектор x(0) - и строится рекуррентная последовательность векторов x(1), x(2),..., x(k),... по формуле


Решение системы линейных уравнений.


Для сходимости этой последовательности при любом начальном приближении необходимо и достаточно, чтобы все собственные значения матрицы G были по абсолютной величине меньше единицы. На практике это трудно проверить, и обычно пользуются достаточными условиями сходимости - итерации сходятся, если какая-нибудь норма матрицы меньше единицы, т.е.


Решение системы линейных уравнений или Решение системы линейных уравнений.

Чем меньше норма матрицы G, тем быстрее сходится итерационный процесс.

Преобразование системы можно осуществить, просто решая каждое i-е уравнение относительно xi :


Решение системы линейных уравнений.


Метод Якоби использует следующий алгоритм построения приближений:


Решение системы линейных уравнений.


Если A - матрица с доминирующей диагональю, т.е. Решение системы линейных уравнений, то метод Якоби сходится при любом начальном приближении x(0).

Метод Якоби относится к одношаговым итерационным методам, когда для нахождения x(k+1) требуется помнить только одну предыдущую итерацию x(k). Для исследования сходимости удобнее записывать итерационные методы не в координатной, а в матричной форме, придерживаясь стандартной формы записи итерационных методов.

Канонической формой одношагового итерационного метода решения СЛАУ называется его запись в виде


Решение системы линейных уравнений,

где Bk+1 - матрица, задающая тот или иной итерационный метод, tk+1 - итерационный параметр. Числовые параметры tk вводят для ускорения сходимости. Способ выбора итерационных параметров определяется при исследовании сходимости метода, когда выясняется при каких значениях параметров метод сходится и когда сходимость будет наиболее быстрой (соответствующие параметры называются оптимальными).

Итерационный метод называют явным, если Bk+1 - единичная матрица. Неявные итерационные методы имеет смысл применять лишь в том случае, когда решение системы уравнений с матрицей Bk требует меньше машинной памяти или времени или алгоритмически проще, чем решение исходной системы.

Методом простой итерации называют явный метод с постоянм параметром


Решение системы линейных уравнений, илиРешение системы линейных уравнений,


где r(k) = Ax(k)-b - вектор невязки. Метод сходится для симметричных положительно определенных матриц при Решение системы линейных уравнений.

Для окончания итерационного процесса используют три способа. При первом определяют величину стабилизации и прекращают вычисления, если она меньше e, т.е.


Решение системы линейных уравнений.


Недостатком этого способа является то, что при медленно сходящихся итерациях величина стабилизации может быть малой, хотя приближенное решение сильно отличается от точного.

При втором способе вычисляют нормы невязки до начала итераций и на каждой итерации. Итерации прекращают при выполнении неравенства


Решение системы линейных уравнений.


При третьем способе предварительно оценивается число итераций, необходимое для получения заданной точности e. Если для погрешности итерационного метода выполняются оценки


Решение системы линейных уравнений,


где q (0,1), то метод сходится со скоростью геометрической прогрессии со знаменателем q. Можно определить, потребовав, чтобы qn < e, число итераций n, достаточное для того, чтобы начальная погрешность уменьшилась в заданное число раз:


Решение системы линейных уравнений.


Целая часть числа n0(e) является минимальным числом итераций, необходимым для получения заданной точности e.

Величина ln(1/q) является скоростью сходимости итерационного метода.


2. Описание используемого метода


Для решения методом Зейделя система линейных алгебраических уравнений Ax = b должна быть приведена к виду x = Gx+f , где G - некоторая матрица, f - преобразованный вектор свободных членов. Затем выбирается начальное приближение - произвольный вектор x(0) - и строится рекуррентная последовательность векторов x(1), x(2),..., x(k),... по формуле


Решение системы линейных уравнений.


Для сходимости этой последовательности при любом начальном приближении необходимо и достаточно, чтобы все собственные значения матрицы G были по абсолютной величине меньше единицы. На практике это трудно проверить, и обычно пользуются достаточными условиями сходимости - итерации сходятся, если какая-нибудь норма матрицы меньше единицы, т.е.


Решение системы линейных уравнений или Решение системы линейных уравнений.


Чем меньше норма матрицы G, тем быстрее сходится итерационный процесс.

Преобразование системы можно осуществить, просто решая каждое i-е уравнение относительно xi :


Решение системы линейных уравнений.


Метод Зейделя использует следующий алгоритм построения приближений:


Решение системы линейных уравнений

Если A - матрица с доминирующей диагональю, т.е. Решение системы линейных уравнений, то метод Зейделя сходится при любом начальном приближении x(0).


Решение системы линейных уравнений

Метод Зейделя сходится примерно так же, как геометрическая прогрессия со знаменателем ||G|| . Если норма матрицы G близка к 1, то скорость сходимости очень медленная. Для ускорения сходимости используется метод релаксации. Суть его в том, что полученное по методу Зейделя очередное значение пересчитывается по формуле:

Здесь 0<wЈ2 – параметр релаксации. Если w<1 - нижняя релаксация, если w>1 – верхняя релаксация. Параметр w подбирают так, чтобы сходимость метода достигалась за минимальное число итераций.

Метод Зейделя является одношаговым итерационным методам, когда для нахождения x(k+1) требуется помнить только одну предыдущую итерацию x(k).

Погрешность итерации вычисляется по формуле:

Решение системы линейных уравнений


n - порядок матрицы A.

Если d меньше заданной точности e, то итерационный процесс прекращают.

Элементы главной диагонали называются главными. Заметим, что если в ходе расчётов по данному алгоритму на главной диагонали окажется нулевой элемент, то произойдет сбой программы. Для того, чтобы избежать этого, следует перестановку строк таким образом, чтобы на главной диагонали находились максимальные элементы строк. Т. е., если в k-й строке максимальным является i-й элемент, необходимо поменять местами k-ю и i-ю строки, и поменять местами соответствующие элементы вектора b. Такой выбор главного элемента необходим для сходимости итерационного процесса.


Приведём блок-схему реализации данного метода:


Решение системы линейных уравнений


Решение системы линейных уравненийРешение системы линейных уравнений

Решение системы линейных уравнений

Решение системы линейных уравнений


Решение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравнений


Решение системы линейных уравнений

Решение системы линейных уравнений


Решение системы линейных уравнений


Решение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравнений


Решение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравнений


Решение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравненийРешение системы линейных уравнений


3. Анализ результатов.


Скорость сходимости итерационного процесса зависит от заданной матрицы коэффициентов. В зависимости от вида исходных данных( матрицы коэффициентов и матрицы b) программа подбирает оптимальный параметр релаксации w(при котором решение достигается за минимальное число итераций).

Для достижения наивысшей скорости сходимости итерационного процесса для уравнения, заданного на рис.3 программой был выбран параметр релаксации w=1,26. Таким образом, была применена верхняя релаксация. Заданная точность e=0,0001 была достигнута за 40 итераций.

График зависимости количества итераций от параметра релаксации приведен на рис 1.

Решение системы линейных уравненийРис. 1


Для достижения наивысшей скорости сходимости итерационного процесса для уравнения, заданного на рис.4 программой был выбран параметр релаксации w=0,98. Таким образом, была применена нижняя релаксация. Заданная точность e=0,0001 была достигнута за 17 итераций. График зависимости количества итераций от параметра релаксации приведен на рис 2.

Решение системы линейных уравнений

Рис. 2


Правильность решения СЛАУ была проверена с помощью программного пакета Mathcad 2000 professional. Отметим, что программа даёт правильное решение СЛАУ почти во всех случаях, когда каждый элемент главной диагонали является максимальным в своей строке.

Вывод


Программа, разработанная в данной

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: