Xreferat.com » Рефераты по информатике и программированию » Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів

Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів

Міністерство освіти і науки України


Курсова робота на тему:

"Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів"


Зміст


Вступ

Розділ І. Прямі методи сортування масивів

1.1 Сортування прямим включенням

1.2 Сортування бінарним включенням

1.3 Сортування прямим вибором

1.4 Сортування прямим обміном

Розділ ІІ. Швидкі методи сортування масивів

2.1 Сортування включенням із зменшуваними відстанями – алгоритм Шелла (1959)

2.2 Сортування обміном на великих відстанях – алгоритм Quick Sort

2.3 Сортування вибором при допомозі дерева – алгоритм Тree Sort

2.4 Сортування вибором при допомозі дерева – алгоритм Heap Sort

2.5 Порівняльна характеристика швидкодії деяких швидких алгоритмів сортування

Висновки

Література


Вступ


В наш час нові інформаційні технології посідають дуже важливе місце не лише в спеціалізованих, але й в повсякденних сферах життя. Комп’ютери застосовуються в бізнесі, менеджменті, торгівлі, навчанні та багатьох інших сферах діяльності людини.

Комп’ютерні технології дуже зручні для виконання різноманітних операцій, але в різних сферах застосування ці операції різні. Тому, кожна окрема галузь, яка використовує специфічні технічні засоби, потребує своїх власних програм, які забезпечують роботу комп’ютерів.

Розробкою програмного забезпечення займається така галузь науки, як програмування. Вона набуває все більшого й більшого значення останнім часом, адже з кожним днем комп’ютер стає все більш необхідним, все більш повсякденним явищем нашого життя. Адже обчислювальна техніка минулих років вже майже повністю вичерпала себе і не задовольняє тим потребам, що постають перед людством.

Таким чином, нові інформаційні технології дуже актуальні в наш час і потребують багато уваги для подальшої розробки та вдосконалення. Поряд з цим, велике значення має також і програмування, яке є одним із фундаментальних розділів інформатики і тому не може залишатись осторонь.

Програмування містить цілу низку важливих внутрішніх задач. Однією з найбільш важливих таких задач для програмування є задача сортування. Під сортуванням звичайно розуміють перестановки елементів будь-якої послідовності у визначеному порядку. Ця задача є однією з найважливіших тому, що її метою є полегшення подальшої обробки певних даних і, насамперед, задачі пошуку. Так, одним з ефективних алгоритмів пошуку є бінарний пошук. Він працює швидше ніж, наприклад, лінійний пошук, але його можливо застосовувати лише за умови, що послідовність вже упорядкована, тобто відсортована.

Взагалі, відомо, що в будь-якій сфері діяльності, що використовує комп’ютер для запису, обробки та збереження інформації, усі дані зберігаються в базах даних, які також потребують сортування. Певна впорядкованість для них дуже важлива, адже користувачеві набагато легше працювати з даними, що мають певний порядок. Так, можна розташувати всі товари по назві або відомості про співробітників чи студентів за прізвищем або роком народження, тощо.

Задача сортування в програмуванні не вирішена повністю. Адже, хоча й існує велика кількість алгоритмів сортування, все ж таки метою програмування є не лише розробка алгоритмів сортування елементів, але й розробка саме ефективних алгоритмів сортування. Ми знаємо, що одну й ту саму задачу можна вирішити за допомогою різних алгоритмів і кожен раз зміна алгоритму приводить до нових, більш або менш ефективних розв’язків задачі. Основними вимогами до ефективності алгоритмів сортування є перш за все ефективність за часом та економне використання пам’яті. Згідно цих вимог, прості алгоритми сортування (такі, як сортування вибором і сортування включенням) не є дуже ефективними.

Алгоритм сортування обмінами, хоча і завершує свою роботу (оскільки він використовує лише цикли з параметром і в тілі циклів параметри примусово не змінюються) і не використовує допоміжної пам’яті, але займає багато часу. Навіть, якщо внутрішній цикл не містить жодної перестановки, то дії будуть повторюватись до тих пір, поки не завершиться зовнішній цикл.

Алгоритм сортування вибором ефективніше сортування обмінами за критерієм М(n), тобто за кількістю пересилань, але також є не дуже ефективним. З цих причин було розроблено деякі нові алгоритми сортування, що отримали назву швидких алгоритмів сортування. Це такі алгоритми, як сортування деревом, пірамідальне сортування, швидке сортування Хоара та метод цифрового сортування.

Метою нашої дослідницької роботи є ознайомлення з цими швидкими алгоритмами сортування, спроба проаналізувати їх і висвітлити кожен з них і написати програму, яка б виконувала сортування деякої послідовності за допомогою різних швидких алгоритмів сортування.

Сортування варто розуміти, як процес перегрупування заданої множини об'єктів в деякому конкретному порядку. Мета сортування - полегшити наступний пошук елементів в такій відсортованій множині.

Вибір алгоритму залежить від структури даних, що обробляються. У випадку сортування ця залежність настільки велика, що відповідні методи навіть були розбиті на дві групи - сортування масивів і сортування файлів (послідовностей). Іноді їх називають внутрішнім і зовнішнім і сортуванням, оскільки масиви зберігаються в швидкій внутрішній пам’яті (оперативній) із довільним доступом, а файли розміщуються в менш швидкій, проте більш об'ємній зовнішній пам'яті.

Метод сортування називається стійким, якщо в процесі впорядкування відносне розміщення елементів з рівними значеннями не міняється. Стійкість сортування часто буває бажаною, якщо йде мова про елементи, що вже впорядковані по деяких вторинних ключах (тобто ознаках), які не впливають на основний ключ.

Нехай дано масив N елементів деякого абстрактного типу basetype:

a : array [1..N] of basetype.

Не обмежуючи загальності, зупинимося на впорядкуванні його компонентів по зростанню.

Основна умова: обраний метод сортування масивів повинен економно використовувати доступну пам’ять. Це означає, що перестановки, які приводять елементи в порядок, повинні виконуватися "на тому ж місці". Тобто методи, в яких елементи масиву a передаються в результуючий масив b, не мають практичної цінності.

Алгоритми сортування окрім критерію економії пам’яті будуть класифікуватися по швидкості, тобто по часу їх роботи. Оскільки на різних типах ЕОМ одні і ті ж методи показуватимуть відмінні результати, то в якості міри ефективності алгоритму можуть бути прийняті числа: C - кількість необхідних порівнянь ключів; M - кількість перестановок елементів. Очевидно, що ці числа є функціями від кількості елементів в масиві N. Згідно із введеними критеріями швидкодії алгоритми сортування поділяють на два типи - прямі та швидкі.

Прямі методи зручні для пояснення і розбору основних рис більшості сортувань, легко програмуються і відлагоджуються, а самі програми - короткі, що теж важливо для економії пам’яті. В основі їх лежить повторення N етапів обробки масиву із зменшенням на кожному з них кількості порівнюваних елементів. Ефективність даних алгоритмів є величиною порядку O(N2). Такі методи зручно використовувати на так званих "коротких" масивах.

Швидкі методи вимагають невеликої кількості етапів обробки, однак ці етапи досить складні. На кожному з них окрім переміщення чергового елемента на "своє" місце відбувається перегрупування решти відносно цього елемента. Звичайно виграш по ефективності для таких алгоритмів отримується на "довгих" масивах.

Методи сортування "на тому ж місці" у відповідності із визначаючими їх принципами розбиваються на три основні категорії :

- сортування включенням;

- сортування вибором;

- сортування обміном.

У курсовій роботі ми детально розглянемо швидкі алгоритми сортування елементів масиву, проведемо їх порівняльний аналіз. Крім цього, розглянемо і прямі методи сортування, їх позитиви і недоліки, що дасть змогу краще визначити ефективність і складність швидких алгоритмів сортування.


Розділ І. Прямі методи сортування масивів


1.1 Сортування прямим включенням


В основі розглядуваного методу лежить пошук для чергового елемента масиву відповідного місця у відсортованій частині із наступним включенням його в знайдену позицію. Таким чином елементи масиву умовно діляться на дві групи - вже "готову" послідовність a 1 , a 2 , ..., a i та вихідну послідовність. На кожному етапі, починаючи з i=2 та збільшуючи i кожен раз на 1, із вихідної послідовності вибирається один елемент і вставляється в потрібне місце у вже впорядковану послідовність. Очевидно, що початкова ліва послідовність буде "готовою", оскільки одноелементний масив завжди впорядкований. Цей алгоритм можна записати у вигляді послідовності команд :


for i:=2 to N do

begin

x:=a[i];

включення x на потрібне місце серед a[1], ..., a[i]

end;


Процес просіювання (пошуку потрібного місця для включення елемента x ) може припинитися при виконанні однієї із двох умов :

1) знайдено елемент a j з ключем, меншим ніж ключ у x ;

2) досягнутий лівий кінець "готової" послідовності.

Таким чином програмна реалізація методу прямого включення матиме вигляд процедури :


Procedure Straight_Insertion;

Var

i, j : integer; x : basetype;

Begin

for i:=2 to N do

begin

x:=a[i]; a[0]:=x; j:=i;

while x<a[j-1] do

begin

a[j]:=a[j-1];

j:=j-1

end;

a[j]:=x

end

End;


Використання додаткового елемента в масиві - "бар’єра" a[0]=x забезпечує гарантоване припинення процесу просіювання. Це дозволяє зменшити кількість логічних умов в заголовку цикла while до однієї, а кількість логічних операцій від 2i-1 до i на кожному етапі. Звичайно, при цьому необхідно попередньо розширити на один елемент масив a та діапазон допустимих значень індекса. На жаль, таке покращення ефективності по кількості порівнянь не зменшує об’єму перестановок елементів.

Аналіз прямого включення. Кількість порівнянь ключів Ci при i-ому просіюванні найбільше дорівнює i, найменше - 1, а середньоймовірна кількість - i/2. Кількість же перестановок (переприсвоєнь ключів), включаючи бар’єр, Mi=Ci+2. Тому для оцінки ефективності алгоритму у випадках початково впорядкованого, зворотньо впорядкованого та довільного масиву можна скористатися наступними співвідношеннями:


Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів ;Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів ;

Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів;

Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів ;

Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів;

Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів .


Очевидно, що розглянутий алгоритм описує процес стійкого сортування.


1.2 Сортування бінарним включенням


Алгоритм прямого включення можна значно покращити, якщо врахувати, що "готова" послідовність є вже впорядкованою. Тому можна скористатися бінарним пошуком точки включення в "готову" послідовність. Програмна реалізація такого модифікованого методу включення матиме вигляд процедури:


Procedure Binary_Insertion;

Var

i, j, m, L, R : integer; x : basetype;

Begin

for i:=2 to N do

begin

x:=a[i]; L:=1; R:=i;

while L<R do

begin

m:=(L+R) div 2;

if a[m]<=x then L:=m+1 else R:=m

end;

for j:=i downto R+1 do

a[j]:=a[j-1];

a[R]:=x

end

End;


Аналіз бінарного включення. Зрозуміло, що кількість порівнянь у такому алгоритмі фактично не залежить від початкового порядку елементів. Місце включення знайдено, якщо L=R. Отже вкінці пошуку інтервал повинен бути одиничної довжини. Таким чином ділення його пополам на i-ому етапі здійснюється log(i) раз. Тому кількість операцій порівняння буде:


Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів, де Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів, Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів.


Апроксимуючи цю суму інтегралом, отримаємо наступну оцінку :


Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів, де Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів.


Однак істинна кількість порівнянь на кожному етапі може бути більшою ніж log(i) на 1. Тому


Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів.


Нажаль покращення, що породженні введенням бінарного пошуку, стосується лише кількості операцій порівняння, а не кількості потрібних переміщень елементів. Фактично кількість перестановок M залишається величиною порядку N2. Для досить швидких сучасних ЕОМ рух елемента, тобто самого ключа і зв’язаної з ним інформації, займає значно більше часу, ніж порівняння самих ключів. Крім того сортування розглядуваним методом вже впорядкованого масиву за рахунок log(i) операцій порівняння вимагатиме більше часу, ніж у випадку послідовного сортування з прямим включенням. Очевидно, що кращий результат дадуть алгоритми, де перестановка, нехай і на велику відстань, буде пов’язана лише з одним елементом, а не з переміщенням на одну позицію цілої групи.


1.3 Сортування прямим вибором


На відміну від включення, коли для чергового елемента відшукувалося відповідне місце в "готовій" послідовності, в основу цього методу покладено вибір відповідного елемента для певної позиції в масиві. Цей прийом базується на таких принципах :

1) на i-ому етапі серед елементів a i , a i+1 , ..., a N вибирається елемент з найменшим ключем a min ; 2) проводиться обмін місцями a min та a i .

Процес послідовного вибору і перестановки проводиться поки не залишиться один єдиний елемент - з самим найбільшим ключем.

Такий алгоритм можна записати у вигляді послідовності команд :


for i:=1 to N-1 do

begin

k:=номер найменшого ключа серед a[i], ..., a[N];

обмін місцями a[k] та a[i]

end;

А програмна реалізація методу прямого вибору матиме вигляд процедури


Procedure Straight_Selection;

Var

i, j, k : integer; x : basetype;

Begin

for i:=1 to N-1 do

begin

x:=a[i]; k:=i;

for j:=i+1 to N do

if a[j]<x then begin x:=a[j]; k:=j end;

x:=a[k]; a[k]:=a[i]; a[i]:=x

end

End;


Аналіз прямого вибору. Очевидно, що кількість порівнянь ключів Ci на i-ому виборі не залежить від початкового розміщення елементів і дорівнює N-i. Таким чином


Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів


Кількість же перестановок залежить від стартової впорядкованості масиву. Це стосується переприсвоєнь у внутрішньому циклі по j при пошуку найменшого ключа.

В найкращому випадку початково впорядкованого масиву Mi=4 ; в найгіршому випадку зворотно впорядкованого масиву Mi=Ci+4 ; для довільного масиву рівномовірно можливе значення Mi=Ci/2+4. Тому для оцінки ефективності алгоритму по перестановках можна скористатися наступними співвідношеннями:


Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів ;

Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів ;

Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів .


Як і в попередньому випадку алгоритм прямого вибору описує процес стійкого сортування.


1.4 Сортування прямим обміном


Даний метод базується на повторенні етапів порівняння сусідніх ключів при русі вздовж масиву. Якщо наступний елемент виявиться меншим від попереднього, то відбувається обмін (звідси і назва методу). Таким чином, при русі з права наліво за один етап найменший ключ переноситься на початок масиву. Зрозуміло, що кожен наступний прохід можна закінчувати після позиції знайденого на попередньому етапі мінімального елемента, оскільки всі елементи перед ним вже впорядковані. Розглядуваний процес дещо нагадує виштовхування силою Архімеда бульбашки повітря у воді. Тому цей алгоритм ще називають "бульбашковим" сортуванням.

Програмна реалізація методу прямого обміну або "бульбашки" матиме вигляд процедури:


Procedure Buble_Sort;

Var

i, j : integer; x : basetype;

Begin

for i:=2 to N do

for j:=N downto i do

if a[j-1]>a[j] then begin x:=a[j]; a[j]:=a[j-1]; a[j-1]:=x end

End;


Якщо етапи порівняння та обміну проводити зліва направо, то відбуватиметься виштовхування найбільшого елемента вкінець масиву. Очевидно такий процес відповідає опусканню під дією сили тяжіння камінця у воді. Назвемо цей алгоритм "камінцевим" сортуванням :


Procedure Stone_Sort;

Var

i, j : integer; x : basetype;

Begin

for i:=1 to N-1 do

for j:=1 to N-i do

if a[j]>a[j+1] then begin x:=a[j]; a[j]:=a[j+1]; a[j+1]:=x end

End;


Обидва алгоритми згідно із визначаючим принципом вимагають досить великої кількості обмінів. Тому виникає питання, чи не вдасться підвищити їх ефективність хоча б за рахунок зменшення операцій порівняння? Цього можна добитися при допомозі наступних покращень:

1) фіксувати, чи були перестановки в процесі деякого етапу. Якщо ні, то - кінець алгоритму ;

2) фіксувати крім факту обміну ще і положення (індекс) останнього обміну. Очевидно, що всі елементи перед ним або після нього відповідно для сортування "бульбашкою" або "камінцем" будуть впорядковані ;

3) почергово використовувати алгоритми "бульбашки" і "камінця". Тому що для чистої "бульбашки" за один прохід "легкий" елемент виштовхується на своє місце, а "важкий" опускається лише на один рівень. Аналогічна ситуація з точністю до навпаки і для "камінця". Такий алгоритм називається "шейкерним" сортуванням.

Читачу пропонується самостійно модифікувати наведені вище процедури з врахуванням цих покращень.

Аналіз прямого обміну. Розглянемо спочатку чисту "бульбашку". Для "камінця" оцінки будуть такими ж самими. Зрозуміло, що кількість порівнянь ключів Ci на i-ому проході не залежить від початкового розміщення елементів і дорівнює N-i. Таким чином


Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів


Кількість же перестановок залежить від стартової впорядкованості масиву. В найкращому випадку початково впорядкованого масиву Mi=0 ; в найгіршому випадку зворотньо впорядкованого масиву Mi=Ci*3; для довільного масиву рівноймовірно можливе значення Mi=Ci*3/2. Тому для оцінки ефективності алгоритму по перестановках можна скористатися наступними співвідношеннями:


Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів ;

Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів ;

Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів .

Очевидно, що і цей алгоритм, аналогічно з іншими прямими методами, описує процес стійкого сортування.

Розглянемо тепер покращений варіант "шейкерного" сортування. Для цього алгоритму характерна залежність кількості операцій порівняння від початкового розміщення елементів в масиві. В найкращому випадку вже впорядкованої послідовності ця величина буде Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів. У випадку зворотньо впорядкованого масиву вона співпадатиме з ефективністю для чистої "бульбашки".

Як видно, всі покращення не змінюють кількості переміщень елементів (переприсвоєнь), а лише зменшують кількість повторюваних порівнянь. На жаль операція обміну місцями елементів в пам’яті є "дорожчою" ніж порівняння ключів. Тому очікуваного виграшу буде небагато. Таким чином "шейкерне" сортування вигідне у випадках, коли відомо, що елементи майже впорядковані. А це буває досить рідко.


Розділ ІІ. Швидкі методи сортування масивів


2.1 Сортування включенням із зменшуваними відстанями – алгоритм Шелла (1959)


Шелл вдосконалив пряме включення. Він запропонував проводити послідовне впорядкування підмасивів з елементів, які знаходяться на великих відстанях. При цьому на кожному наступному етапі відстані між елементами в групах мають зменшуватися.

Для ілюстрації алгоритму розглянемо його покрокове описання. Не обмежуючи загальності, в якості прикладу спочатку зупинимося на масиві з кількістю елементів, що є степенем двійки, тобто Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів:

1) на першому етапі окремо групуються і сортуються елементи, розміщені на відстані N/2 . Це є впорядкування N/2 підмасиві по 2 елементи, яке називатимемо N/2-сортування .

2) на другому етапі виконується впорядку вання N/4 підмасивів по 4 елементи на відстані N/4 - N/4-сортування і т.д.

На останньому етапі виконується одинарне сортування (впорядкування на відстані 1). Наприклад :

44 55 12 42 94 18 06 67

етап I-сортування

44 18 06 42 94 55 12 67

етап II-сортування

06 18 12 42 44 55 94 67

етап III-сортування

06 12 18 42 44 55 67 94

Виникає питання, чи використання багатьох процесів сортування із залученням всіх елементів не збільшить кількість операцій, тобто складність алгоритму? Але на кожному проході або впорядковується відносно мало елементів (початкові етапи), або елементи вже досить добре впорядковані і вимагається відносно мало перестановок (кінцеві етапи). Кожне i-те сортування об’єднує дві групи, вже впорядковані 2i-тим сортуванням. Очевидно, що відстань між елементами груп можна зменшувати по-різному, головне, щоб остання була одиничною. Останній прохід в найгіршому випадку і виконує основну роботу. Варто зауважити, що такий довільний підхід при зменшенні відстаней не погіршує результату і у випадку кількості елементів N, що не є степенем двійки.

Нехай виконується t етапів. Відстані між елементами в окремих групах на кожному етапі позначимо : h1 , h2 , ..., h t , де h t=1, h i+1<h i , i=1, 2, ..., t-1. Таким чином розглядаються h-ті сортування. Кожне h-те сортування можна реалізувати будь-яким із прямих методів. Зокрема, вибір включення оправданий кращою в порівнянні з іншими алгоритмами ефективністю по перестановках ключів. Однак, чи варто для спрощення умови припинення пошуку місця включення чергового елемента користуватися методом бар’єрів? Оскільки кожне h-те сортування потребує свого власного бар’єра, то прийдеться розширити масив не на одну компоненту a0 , а на h1 компонент. На першому етапі - це практично половина всіх елементів. У випадку "довгих" масивів прийдеться порушити правило сортування "на своєму місці". Тому не варто заради економії однієї логічної операції на кожному етапі впорядкування жертвувати такими об’ємами пам’яті.

Кількість етапів сортування t як і відстані на кожному з них можна вибирати довільно. Зокрема, це може бути кількість цілочисельних поділів числа N на 2, тобто t=[log(N)]. В якості прикладу пропонується процедура сортування методом Шелла для масиву із 16 елементів :


Procedure Shell_Sort;

Const t=4;

Var

m, i, j, k : integer;

h : array [1..t] of integer;

x : basetype;

Begin

h[1]:=8; h[2]:=4; h[3]:=2; h[4]:=1;

for m:=1 to t do

begin

k:=h[m];

for i:=k+1 to N do

begin

x:=a[i]; j:=i-k;

while (x<a[j]) and (j>0) do

begin

a[j+k]:=a[j]; j:=j-k

end;

a[j+k]:=x

end

end

End;


Аналіз алгоритму Шелла. Поки що не має чітко обгрунтованих виборів відстаней, які давали б найкращу ефективність. Самим цікавим є те, що ці відстані не повинні бути множниками один одного, а тим більше степенями деяких чисел. Це дозволяє уникнути явища, коли на певному етапі взаємодіють дві групи, які до цього ніде ще не перетиналися. Взагалі, бажано, щоб взаємодія окремих ланцюгів відбувалася якомога частіше. Вірною є наступна теорема :

Теорема. Якщо k-відсортовану послідовність i-відсортувати, то вона при цьому залишиться k-відсортованою.

Кнут рекомендує використовувати такі послідовності відстаней, записані в зворотньому порядку :

1, 4, 13, 40, 121, ... , де h i-1=3h i+1 , h t=1 , t=[log 3 N]-1 , або

1, 3, 7, 15, 31, ... , де h i-1=2h i+1 , h t=1 , t=[log 2 N]-1.


З обчислювальної практики відомо, що загалом метод Шелла має ефективність порядку O(N1,2).


2.2 Сортування обміном на великих відстанях – алгоритм Quick Sort


Основна причина повільної роботи алгоритму прямого обміну полягає в тому, що всі порівняння і перестановки елементів в послідовності a 1 , a 2 , ..., a N відбуваються для пар із сусідніх елементів. При такому способі потрібно відносно більше часу, щоб поставити деякий ключ, який знаходиться не на своєму місці, в потрібну позицію у сортованій послідовності. Природньо попробувати пришвидшити цей процес, порівнюючи пари елементів, що знаходяться далеко один від одного в масиві. К. Хоор розробив алгоритм Quick Sort із середнім часом роботи порядку O(N*lnN).

Припустимо, що перший елемент масиву, що сортується, є хорошим наближенням елемента, який вкінці опиниться на своєму місці у відсортованій послідовності. Приймемо його значення в якості ведучого елемента, відносно якого ключі будуть мінятися місцями. Для зручності реалізації алгоритму використаємо два вказівники I, J, перший з яких вестиме відлік вздовж розглядуваної частини масиву зліва, а другий - справа. Початково їх значення будуть відповідно I=1, J=N. Таким чином ведучим елементом буде значення a[I]. Перестановки ключів проводяться за такими принципами :

1) порівнюються елементи a[I] та a[J]; якщо a[I]Јa[J], то здійснюється крок вліво J:=J-1 і порівняння повторюється; зменшення J продовжується доти, поки не виконається умова a[I]> a[J];

2) якщо при порівнянні елементів досягнута умова a[I]> a[J], то проводиться обмін місцями кючів a[I] та a[J] і здійснюється крок вправо I:=I+1; таким чином ведучий елемент перейшов в позицію J; порівняння ключів із збільшенням I продовжується доти,

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: