Xreferat.com » Рефераты по информатике и программированию » Разработка программы-компилятора

Разработка программы-компилятора

Содержание


Введение

1. Анализ задания

2. Разработка лексического анализатора

2.1 Выбор и обоснование структур данных

2.2 Разработка автоматных грамматик для распознавания лексем

2.3 Разработка автоматов, работающих по правилам грамматики

2.3.1 Автомат для распознавания имён

2.3.2 Автомат для распознавания 16-ричных констант

2.3.3 Автомат для распознавания римских констант

2.3.4 Объединённый автомат

2.4 Разработка алгоритма и программы лексического анализа

2.4.1 Выделение лексем

2.4.2 Распознавание лексем

2.4.3 Реализация лексического анализатора

2.4.4 Тестирование лексического анализатора

3. Разработка синтаксического анализатора

3.1 Уточнение грамматики языка применительно к варианту задания

3.2 Разработка алгоритма синтаксического анализа

3.3 Алгоритмы распознающих функций

3.3.1 Функция Lex_Progr

3.3.2 Функция Lex_Descr_List

3.3.3 Функция Lex_Descr

3.3.4 Функция Lex_Name_List

3.3.5 Функция Lex_Oper_List

3.3.6 Функция Lex_Assign

3.3.7 Функция Lex_Exp

3.3.8 Функция Lex_Simple_Exp

3.3.9 Функция Lex_Term

3.3.10 Функция Lex_mnozh

3.3.12 Функция Lex_Body

3.4 Тексты распознающих процедур

3.5 Результаты тестирования синтаксического анализатора

4. Реализация двухфазного компилятора

4.1 Результаты тестирования двухфазного компилятора

5. Описание программы

5.1 Общие сведения и функциональное назначение

5.2 Вызов и загрузка

5.3 Входные данные

5.4 Выходные данные

5.5 Описание логической структуры программы

5.5.1 Файлы программы

5.5.2 Общее описание работы программы

Список использованной литературы


Введение


По классификации программного обеспечения ЭВМ компиляторы относятся к системным обрабатывающим программам. Их функцией является перевод программы с языка высокого уровня в машинный код. В процессе перевода в программе выделяются и изменяются такие уровни или слои как алфавит, лексика, синтаксис при сохранении семантики.

Алфавит - набор допустимых символов и знаков, из которых строятся элементарные конструкции языка. Отдельные знаки объединяются в лексемы.

Лексема - отдельная неделимая конструкция, имеющая смысл.

Слова (лексемы) объединяются в предложения (операторы) согласно правилам синтаксиса.

Синтаксис - описание правильных конструкций языка или правил получения правильных конструкций языка.

Компиляция состоит из этапов анализа и синтеза. В анализ входит лексический, синтаксический и семантический анализ.

Лексический анализ состоит из распознавания лексем, их классификации и определения правильности.

Синтаксический анализ заключается в проверке правильности структур языка, таких как предложения или операторы и всей программы в целом.

1. Анализ задания


Задание можно разделить на 3 части: лексический анализ, синтаксический анализ, разработка компилятора в целом

Лексический анализ включает этапы:

преобразование исходного текста в длинную строку;

выделение лексических единиц (лексем);

распознавание типов лексем;

добавление лексем в соответствующие таблицы;

сохранение таблиц в виде файлов.

В данном задании используются следующие типы лексем:

идентификаторы;

ключевые слова;

16-ричные и римкие константы;

знаки операций;

разделители.

Идентификаторы (имена)

Следует отметить, что идентификатор может начинаться только с буквы, следующие символы могут быть как буквы, так и цифры и знак подчеркивания (‘_’). Кроме того, идентификаторы не могут совпадать со служебными словами.

В данном задании встречаются следующие идентификаторы:

‘var15’, ‘n’. Их следует записать в таблицу идентификаторов.

Ключевые слова

Этот класс лексем, как правило, описывается тем же синтаксисом, что и идентификаторы. Основное отличие состоит в том, что все ключевые слова заранее перечислены и каждое играет в языке свою особую роль. Оно не может заменяться другими ключевыми словами. Лексический анализатор должен отличать ключевые слова от обычных имен, различать между собой и возвращать для каждого из них свои (уникальные) значения.

Лексический анализатор должен различить следующие ключевые слова:

‘program’, ‘var’, ‘integer’, ‘begin’, ‘repeat’, ‘until’, ‘end’, и записать их в таблицу терминальных символов.

Константы.

В данном задании встречаются как 16-ричные, так и римские константы. Необходимо, чтобы лексический анализатор правильно различал константы и различал их тип (16-ричная константа, римская константа) и записывал тип в таблицу констант.

Константа считается римской, если она состоит из знака и символов ‘X’,’V’ и ‘I’ и образована по правилам составления римских констант. Она считается 16-ричной, если начинается с символа ‘$’ и знака и состоит из цифр и букв ‘A’. ’F’. Константы могут быть как положительными, так и отрицательными, это зависит от знака после символа ‘$’.

Лексический анализатор должен различить константы:

‘$+00’, ‘$-0A’ - как 16-ричные;

‘-XII’ - как римскую.

Эти лексемы он должен записать в таблицу констант с указанием их типа (’16-рич. ’ - для 16-ричной константы, ’римск. ’ - для римской константы) и указанием десятичной формы.

Знаки операций.

Их особенность состоит в том, что они могут быть одно - или двухсимвольными. В данном задании встречаются как односимвольные, так и двухсимвольные операции. Такие лексемы лексический анализатор должен распознать правильно (двухсимовольные операции не разбивать на отдельные операции) и записать их в таблицу терминальных символов.

В данном задании встречаются следующие операции:

Односимовольные: ‘-’, ‘<’;

Двухсимвольные: ‘: =’.

Разделители.

К ним относятся специальные символы, разделяющие конструкции языка, например:; |, |. | (|) | пробелы | символы табуляции и перехода на новую строку. Они могут либо возвращаться в синтаксический анализатор в качестве лексем, либо только указывать на окончание предыдущей лексемы и пропускаться при вводе следующей. Некоторые из этих символов одновременно могут играть роль терминальных символов в грамматическом описании отдельных конструкций языка.

В данном задании встречаются следующие разделители:

‘; ’, ‘: ’, ‘. ’,’ (‘,’) ’.

Границами лексем являются разделители, знаки операций, пробелы.

В процессе синтаксического анализа решаются две задачи:

распознавание предложений языка;

определение правильности конструкций.

Предложение считается синтаксически правильным, если оно представляет сентенциальную форму грамматики языка, т.е. может быть выведено с помощью некоторой цепочки переходов из начального символа грамматики.

В процессе синтаксического анализа всего исходного текста в целом и каждого предложения в отдельности возможно два направления движения по цепочке правил: сверху вниз и снизу вверх.

В процессе синтаксического анализа строится дерево грамматического разбора для каждого предложения. Это дерево строится от начального к конечному символу или наоборот.

Дерево вывода состоит из начального (корневого) узла. В него включают еще промежуточные узлы и внешние узлы.

Каждой ветви соответствует одно из правил грамматики.

Входные данные - таблица кодов лексем, сформированная на стадии лексического анализа.

Выходные данные - сообщение об успешном завершении анализа или сообщение об имеющихся ошибках.

2. Разработка лексического анализатора


2.1 Выбор и обоснование структур данных


1. Таблица констант организована в виде двоичных деревьев

Для хранения таблицы имен используется массив из записей Const_tab, содержащих следующие элементы:

Номер лексемы.

Лексема.

Тип константы (16-ричная или римская).

Ширина константы.

10-тичная форма.

Левая ветвь дерева (номер элемента, который является левой ветвью для данного).

Правая ветвь дерева (номер элемента, который является правой ветвью для данного).

Путь к элементу по дереву (последовательность левых и правых ветвей, которые необходимо пройти, чтобы достичь данного элемента).

2. Таблица терминальных символов организована в виде двоичных деревьев

Для хранения таблицы имен используется массив из записей Term_tab, содержащих следующие элементы:

Номер лексемы.

Лексема.

Разделитель (если лексема является разделителем, то это поле равно 1, если нет, то 0).

Знак операция (если лексема является знаком операции, то это поле равно 1, если нет, то 0).

Ключевое слово (если лексема является ключевым словом, то это поле равно 1, если нет, то 0)

Левая ветвь дерева (номер элемента, который является левой ветвью для данного).

Правая ветвь дерева (номер элемента, который является правой ветвью для данного).

Путь к элементу по дереву (последовательность левых и правых ветвей, которые необходимо пройти, чтобы достичь данного элемента).

3. Для хранения таблицы идентификаторов используется метод с использованием хэш-функций

Для хранения таблицы констант используется массив из записей Id_tab, содержащих следующие элементы:

Ссылка на элемент цепочки.

Номер.

Лексема.

В данном случае хэш-функция вычисляется по методу деления, т.е.


h (k): = {K/α}


где K - ключ записи, α - некоторый коэффициент

Для наиболее удобного распределения данных в таблице коэффициент α примем:


α= Li+2


где L - количество символов i-той строки, в которой хранится идентификатор.

Код K рассчитывается как сумма ASCII-кодов символов строки, в которой хранится идентификатор.

4. Для хранения таблицы кодов лексем используется массив из записей Code_tab, содержащих следующие элементы:

Номер.

Тип лексемы (C - константа, I - идентификатор, T - терминальный символ).

Номер в таблице констант, идентификаторов или терминальных символов.

Лексема.

Номер в таблице кодов лексем.

Для организации поиска используется последовательный метод.


2.2 Разработка автоматных грамматик для распознавания лексем


Автоматными или регулярными грамматиками называются грамматики, продукции которых имеют одну из двух форм:


Праволинейная Леволинейная
A→aB A→Ba
A→a A→a

где a О Т; А, В О N

Эти грамматики широко используются для построения лексических анализаторов. Грамматику лексических единиц обычно явно не описывают, а строят эквивалентный ей граф распознавания лексических единиц.

Грамматика для идентификаторов:

<имя>→<буква>{<буква>|<цифра>’_’}

<буква>→ (’a’. ’z’)

<цифра>→ (‘0’. ’9’)

Грамматика для констант:

<константа>→<16-рич. константа>|<римск. константа>

Для 16-ричных констант:

<16-рич. константа>→ (‘$+’,’$-‘) (<цифра>, ‘A’. ’F’) { (<цифра>,‘A’. ’F’) }

Для римских констант:


Разработка программы-компилятора


2.3 Разработка автоматов, работающих по правилам грамматики


2.3.1 Автомат для распознавания имён


Разработка программы-компилятора

рис.1. Автомат для распознавания имён


Состояния автомата:

S - начальное состояние;

1 - промежуточное состояние, соответствующее продолжению формирования имени;

2 - конечное состояние, соответствующее выделению правильного идентификатора;

3 - конечное состояние, соответствующее ошибке при выделении идентификатора.

2.3.2 Автомат для распознавания 16-ричных констант


Разработка программы-компилятора

рис.3. Автомат для распознавания 16-ричных констант


Состояния автомата:

S - начальное состояние;

1 - промежуточное состояние, обозначающее, что распознан символ начала константы ‘$’;

2 - промежуточное состояние, обозначающее, что распознан знак константы, и продолжение формирования константы;

3 - конечное состояние, соответствующее выделению правильной 16-ричной константы;

4 - конечное состояние, соответствующее ошибке при выделении 16-ричной константы.


2.3.3 Автомат для распознавания римских констант

Римские константы образуются по следующим правилам:

Римская система нумерации состоит из семи знаков: I - 1, V - 5, X - 10, C - 100, D - 500, M - 1000. В данной работе используются только три первых знака, т.е. автомат может распознавать числа от 1 (I) до 39 (XXXIX).

Если меньший знак пишется после большего, то его прибавляют к большему числу; если же перед большим - вычитают. Вычитать можно только числа, начинающиеся с 1, в данном случае - 1, т.к не имеет смысла вычитать, например, 5 из 5 (в результате 0) или из 10 (в результате 5).

Знаки, эквивалентные числам, начинающимся с 1 (1, 10, 100, 1000), могут использоваться от одного до 3 раз. Знаки, эквивалентные числам, начинающимся с 5 (5, 50, 500) могут использоваться только 1 раз. Таким образом, чтобы образовать число 4, нужно из 5 вычесть 1 (IV), а чтобы образовать число 6, нужно прибавить 1 к 5 (VI).

В соответствии с приведёнными правилами, сформируем ряд ограничений для автомата-распознавателя:

Символ X может встречаться в начале строки от 1 до 3 раз подряд (см. правило 3).

Символ V может встречаться не более 1 раза в начале строки и после 1 или более символов X (см. правило 3).

Символ I может встречаться от 1 до 3 раз подряд в начале строки, а также в конце правильной строки, образованной символами X и V (см. ограничения 1 и 2, правило 3).

Символ X может встречаться в конце строки 1 раз после символа I, если перед последним находятся только символы X или ничего (иначе будет нарушено правило 2 - неизвестно, к какому символу будет относиться символ I).

Символ V может встречаться в конце строки 1 раз после символа I, если перед последним находятся только символы X (аналогично ограничению 4).

Разработка программы-компилятора

рис.4. Автомат для распознавания римских констант


Состояния автомата:

S - начальное состояние;

Sg - промежуточное состояние, соответствующее распознаванию знака константы.

1 - промежуточное состояние, соответствующее распознаванию символа X.

2 - промежуточное состояние, соответствующее распознаванию символа V.

3 - промежуточное состояние, соответствующее распознаванию символа I.

4 - конечное состояние, соответствующее ошибке пр. выделении римской константы.

5 - промежуточное состояние, соответствующее распознаванию строки XX.

6 - промежуточное состояние, соответствующее распознаванию строки XXX.

7 - промежуточное состояние, соответствующее распознаванию символа I после V, XV, XXV или XXXV.

8 - промежуточное состояние, соответствующее распознаванию символа X после I, XI, XXI или XXXI.

9 - промежуточное состояние, соответствующее распознаванию символа V после I, XI, XXI или XXXI.

10 - промежуточное состояние, соответствующее распознаванию символа I после правильной строки, заканчивающейся на I.

11 - промежуточное состояние, соответствующее распознаванию символа I после правильной строки, заканчивающейся на II.

В конечное состояние автомата, соответствующее распознаванию правильной римской константы, можно перейти из любого состояния, кроме Sg и 4, как только наступит конец лексемы.


2.3.4 Объединённый автомат

Объединённый автомат является соединением приведённых выше автоматов при общем начальном состоянии S. Все состояния и входные сигналы останутся теми же.


2.4 Разработка алгоритма и программы лексического анализа


Непосредственно лексический анализ представляет собой 2 этапа: выделение лексем и их распознавание. На экран выводятся таблицы констант, идентификаторов, терминальных символов и кодов лексем. Все таблицы сохраняются в файлы на диске.

После завершения лексического анализа становится возможным выполнить синтаксический анализ.

2.4.1 Выделение лексем

Процесс выделения лексем состоит в просмотре входной строки по одному символу и в случае обнаружения символа-разделителя формирование лексемы. Символами разделителями являются как сами разделители (терминальные символы) так и знаки операций. В программе предусмотрены двойные знаки операций (‘: =’).

При чтении очередного символа сначала проверяется, является ли он разделителем. Если это не так, то разделитель считается частью текущей лексемы и продолжается процесс ее формирования. Если это так, то проверяется вариант двойной операции и работа заканчивается. Если это не двойная операция, то происходит запись разделителя, как лексемы.

Такая последовательность действий повторяется до окончания входной строки. Процесс выделения лексем реализован в функции Select_Lex, которая возвращает строки, содержащие выделенные лексемы.


2.4.2 Распознавание лексем

Последовательно определяется тип каждой лексемы с помощью соответствующих распознавателей. Каждая лексема добавляется в таблицу кодов лексем и в соответствующую типу таблицу (констант, имен, терминальных символов). Если лексема ошибочна (т.е. не принадлежит ни одному из вышеназванных типов), то в таблице кодов лексем ей присваивается тип Е, обозначающий ошибку.

Каждая процедура распознавания, кроме распознавателя терминальных символов, построена как конечный автомат. Описание самих автоматов приведено выше. В плане программной реализации каждый такой распознаватель имеет следующие элементы:

константа, определяющая начальное состояние (обычно 0);

множество состояний, соответствующих удачному распознаванию лексемы;

множество состояний, свидетельствующих об ошибке в лексеме;

Распознавателем идентификаторов является функция Ident, 16-ричных констант - функция FConst, римских констант - функция Rome. Все они возвращают значение 1, если лексема распознана и - 1 в противном случае. Распознавателем терминальных символов является функция Termin. Она возвращает значение 3, если лексема - ключевое слово, 1 - если разделитель, 2 - если знак операции. Если лексема не является терминальным символом, то функция возвращает значение - 1. Если лексема ошибочна, то она заносится в таблицу кодов лексем с типом E и выдаётся сообщение об ошибке (процедура Err_Lex). Все эти подпрограммы вызываются из процедуры TForm1. N5Click (соответствует выбору пункта меню Анализатор/Лексический). В ней производится обнуление всех таблиц, вызов функции выделения лексем и процедуры WriteLex (см. ниже).

Поиск идентификаторов, констант и терминальных символов в соответствующих таблицах производится, соответственно, процедурами Search_Ident, Search_Const и Search_Term, добавление в таблицы - процедурами Add_Ident, Add_Const и Add_Term. Все они вызываются из процедуры WriteLex, входными данными для которой являются результаты распознавания лексем, т.е. типы лексем. Запись в таблицу кодов лексем производится процедурой WriteCode, вывод всех таблиц на экран - процедурой vyvod.

Перевод констант в десятичную форму производится процедурой perevod.


2.4.3 Реализация лексического анализатора

Приведём текст подпрограммы лексического анализатора:

// процедура перевода констант в десятичную форму

procedure perevod (SS: string; var Str16: string);

var ch3,ch4,ch, i: integer;

zn: string;

begin

ch: =0; // для римских констант

if (SS [2] ='X') or (SS [2] ='V') or (SS [2] ='I') then

begin

zn: =SS [1] ;

delete (SS,1,1);

while Length (SS) <>0 do

begin

if SS [1] ='X' then begin ch: =ch+10; delete (SS,1,1); end

else begin

if SS [1] ='V'then begin ch: =ch+5; delete (SS,1,1); end

else begin

if ( (SS [1] ='I') and (SS [2] ='I')) or ( (SS [1] ='I') and (SS [2] ='')) then begin ch: =ch+1; delete (SS,1,1); end

else begin

if (SS [1] ='I') and (SS [2] ='X') then begin ch: =ch+9; delete (SS,1,2); end

else begin

if (SS [1] ='I') and (SS [2] ='V') then begin ch: =ch+4; delete (SS,1,2); end;

end; end; end; end; end;

str16: =zn+IntToStr (ch);

exit;

end;

// для 16-рич. констант

If SS [3] in ['0'. '9']

then

ch3: =StrToInt (SS [3]) *16

else

if SS [3] in ['A'. 'F']

then

begin

ch3: =ord (SS [3]);

case ch3 of

65: ch3: =10*16;

66: ch3: =11*16;

67: ch3: =12*16;

68: ch3: =13*16;

69: ch3: =14*16;

70: ch3: =15*16;

end;

end;

If SS [4] in ['0'. '9']

then

ch4: =StrToInt (SS [4])

else

if SS [4] in ['A'. 'F']

then

begin

ch4: =ord (SS [4]);

case ch4 of

65: ch4: =10;

66: ch4: =11;

67: ch4: =12;

68: ch4: =13;

69: ch4: =14;

70: ch4: =15;

end;

end;

ch: =ch3+ch4;

If (SS [3] ='0') and (SS [4] ='0')

then Str16: =IntToStr (ch)

else Str16: =SS [2] +IntToStr (ch);

end;

procedure TForm1. N3Click (Sender: TObject);

begin

close;

end;

function Select_Lex (S: string; {исх. строка} var Rez: string; {лексема}N: integer {текущая позиция}): integer;

label 1;

begin // функция выбора слов из строки

k: = Length (S);

Rez: ='';

i: =N; // точка продолжения в строке

while (S [i] =' ') and (i<= k) do i: =i+1; // пропуск ' '

while not (S [i] in deleter) and (i<= k) do // накопление лексемы

begin

if s [i] ='$' then

begin

Rez: =s [i] +s [i+1] ;

i: =i+2;

end

else begin

1: Rez: =Rez+s [i] ;

i: =i+1;

end;

end;

if Rez='' then

begin

if (s [i] =': ') then

begin

if (s [i+1] ='=') then // в случае операции из двух символов

begin

Rez: =s [i] +s [i+1] ;

Select_Lex: =i+2;

end

else

begin

Rez: =s [i] ;

Select_Lex: =i+1;

end;

end else

begin

if ( (s [i] ='+') or (s [i] ='-')) and (s [i-1] =' (')

then begin

Rez: =s [i] +s [i+1] ;

i: =i+2;

goto 1;

end

else begin

Rez: =s [i] ;

Select_Lex: =i+1;

end; end;

end else Select_Lex: =i;

end;

procedure Add_Const (Curr_term: integer; str_lex: string); // Процедура добавления идентификаторов в дерево

begin

if NumConst=1 then // Если корень дерева еще не создан, то создаем его.

begin

perevod (str_lex,str16);

Const_tab [NumConst]. value: =str_lex;

Const_tab [NumConst]. nomer: =NumConst;

Const_tab [NumConst]. Val10: =str16;

Const_tab [NumConst]. Left: =0;

Const_tab [NumConst]. Right: =0;

Const_tab [NumConst]. Way: ='V';

Exit;

end;

if (CompareStr (Const_tab [Curr_term]. value,str_lex) >0) then // Если значение текущего узла дерева больше добавляемого

if Const_tab [Curr_term]. Left=0 then // если у этого элемента дерева нет левого указателя, то

begin

perevod (str_lex,str16);

Const_tab [Curr_term]. Left: =NumConst; // Создание левого элемента.

Const_tab [NumConst]. value: =str_lex;

Const_tab [NumConst]. nomer: =NumConst;

Const_tab [NumConst]. Val10: =str16;

Const_tab [NumConst]. Left: =0;

Const_tab [NumConst]. Right: =0;

Const_tab [NumConst]. Way: =Const_tab [NumConst]. Way+'L';

end else begin

Const_tab [NumConst]. Way: =Const_tab [NumConst]. Way+'L';

Add_Const (Const_tab [Curr_term]. Left,str_lex); // Если левый указатель существует, то вызываем уже функцию для левого указателя.

end;

if (CompareStr (Const_tab [Curr_term]. value,str_lex) <0) then // если у этого элемента дерева нет правого указателя, то

if Const_tab [Curr_term]. Right=0 then

begin

perevod (str_lex,str16);

Const_tab [Curr_term]. Right: =NumConst; // Создаем правый элемент.

Const_tab [NumConst]. value: =str_lex;

Const_tab [NumConst]. nomer: =NumConst;

Const_tab [NumConst]. Val10: =str16;

Const_tab [NumConst]. Left: =0;

Const_tab [NumConst]. Right: =0;

Const_tab [NumConst]. Way: =Const_tab [NumConst]. Way+'R';

end else begin

Const_tab [NumConst]. Way: =Const_tab [NumConst]. Way+'R';

Add_Const (Const_tab [Curr_term]. Right,str_lex); // Если правый указатель существует, то вызываем уже функцию для правого указателя.

end;

end;

procedure Add_Term (Curr_term: integer; str_lex: string); // Процедура добавления идентификаторов в дерево

begin

if NumTerm=1 then // Если корень дерева еще не создан, то создаем его.

begin

Term_tab [NumTerm]. lex: =str_lex;

Term_tab [NumTerm]. nomer: =NumTerm;

Term_tab [NumTerm]. Left: =0;

Term_tab [NumTerm]. Right: =0;

Term_tab [NumTerm]. Way: ='V';

Exit;

end;

if (CompareStr (Term_tab [Curr_term]. lex,str_lex) >0) then // Если значение текущего узла дерева больше добавляемого

if Term_tab [Curr_term]. Left=0 then // если у этого элемента дерева нет левого указателя, то

begin

Term_tab [Curr_term]. Left: =NumTerm; // Создание левого элемента.

Term_tab [NumTerm]. lex: =str_lex;

Term_tab [NumTerm]. nomer: =NumTerm;

Term_tab [NumTerm]. Left: =0;

Term_tab [NumTerm]. Right: =0;

Term_tab [NumTerm]. Way: =Term_tab [NumTerm]. Way+'L';

end else begin

Term_tab [NumTerm]. Way: =Term_tab [NumTerm]. Way+'L';

Add_Term (Term_tab [Curr_term]. Left,str_lex); // Если левый указатель существует, то вызываем уже функцию для левого указателя.

end;

if (CompareStr (Term_tab [Curr_term]. lex,str_lex) <0) then // если у этого элемента дерева нет правого указателя, то

if Term_tab [Curr_term]. Right=0 then

begin

Term_tab [Curr_term]. Right: =NumTerm; // Создаем правый элемент.

Term_tab [NumTerm]. lex: =str_lex;

Term_tab [NumTerm]. nomer: =NumTerm;

Term_tab [NumTerm]. Left: =0;

Term_tab [NumTerm]. Right: =0;

Term_tab [NumTerm]. Way: =Term_tab [NumTerm]. Way+'R';

end else begin

Term_tab [NumTerm]. Way: =Term_tab [NumTerm]. Way+'R';

Add_Term (Term_tab [Curr_term]. Right,str_lex); // Если правый указатель существует, то вызываем уже функцию для правого указателя.

end;

end;

procedure Add_Ident (str: string); // процедура добавления константы

var i: integer;

begin

kod: =Length (str) +2;

hesh: =0;

for i: =1 to Length (str) do hesh: =hesh+ord (str [i]); // вычисление хэш

hesh: =round (hesh/kod); // метод деления

while (Id_tab [hesh]. lex<>'') and (hesh<maxnum) do // пока ячейка занята

begin

Id_tab [hesh]. ssylka: =hesh+1;

hesh: =hesh+1;

end;

Id_tab [hesh]. nomer: =Numid; // запись данных

Id_tab [hesh]. lex: =str;

end;

function Search_Ident (str: string): integer; // функция поиска терминала

var i: integer;

label 1;

begin

kod: =Length (str) +2;

hesh: =0;

for i: =1 to Length (str) do hesh: =hesh+ord (str [i]); // вычисление хэш

hesh: =round (hesh/kod);

1: if str=Id_tab [hesh]. lex then Search_Ident: =Id_tab [hesh]. nomer else // поиск идентификатора

begin

if Id_tab [hesh]. ssylka=0 then Search_Ident: =0 else

begin

hesh: =Id_tab [hesh]. ssylka;

goto 1;

end;

end;

end;

procedure Search_Const (Curr_term: integer; str_lex: string); // Процедура поиска лексем в дереве идентификаторов

begin

Constyes: =0; // флаг: найдена ли лексема

if (NumConst<>0) and (str_lex<>'') then

begin

if (CompareStr (Const_tab [Curr_term]. value,str_lex) >0) and (Const_tab [Curr_term]. Left<>0) then

Search_Const (Const_tab [Curr_term]. Left,str_lex); // рекурсивный "спуск по дереву"

if (CompareStr (Const_tab [Curr_term]. value,str_lex) <0) and (Const_tab [Curr_term]. Right<>0) then

Search_Const (Const_tab [Curr_term]. Right,str_lex);

if Const_tab [Curr_term]. value=str_lex then Constyes: =Const_tab [Curr_term]. nomer;

end;

end;

procedure Search_Term (Curr_term: integer; str_lex: string); // Процедура поиска лексем в дереве идентификаторов

begin

Termyes: =0; // флаг: найдена ли лексема

if (NumTerm<>0) and (str_lex<>'') then

begin

if (CompareStr (Term_tab [Curr_term]. lex,str_lex) >0) and (Term_tab [Curr_term]. Left<>0) then

Search_Term (Term_tab [Curr_term]. Left,str_lex); // рекурсивный "спуск по дереву"

if (CompareStr (Term_tab [Curr_term]. lex,str_lex) <0) and (Term_tab [Curr_term]. Right<>0) then

Search_Term (Term_tab [Curr_term]. Right,str_lex);

if Term_tab [Curr_term]. lex=str_lex then Termyes: =Term_tab [Curr_term]. nomer;

end;

end;

// функция распознавания 16-рич. констант

function FConst (str: string): integer;

var

sost: byte;

begin

sost: =0;

if str [1] ='$' then // распознаём символ '$'

begin

sost: =1;

delete (str,1,1);

end

else exit;

if (str [1] ='+') or (str [1] ='-') then // распознаём знак

begin

sost: =2;

delete (str,1,1)

end

else begin sost: =4; exit; end;

if str='' then exit;

while length (str) >0 do begin

if (str [1] in cifra) or (str [1] in bukva)

then sost: =2 // распознаём буквы или цифры

else begin sost: =4; exit;

end;

delete (str,1,1);

end;

sost: =3;

if sost=3 then FConst: =1 else FConst: =-1;

end;

function termin: integer; // распознаватель терминальных символов

begin

termin: =-1;

for k: =1 to 14 do if Words [k] =Lexem then termin: =3;

for k: =1 to 8 do if Razdel [k] =Lexem then termin: =1;

for k: =1 to 11 do if Operacii [k] =Lexem then termin: =2;

end;

function Rome (str: string): integer; // распознаватель римских констант

var sost: byte;

begin

sost: =0;

if (str [1] ='-') or (str [1] ='+')

then begin sost: =12; delete (str,1,1); end;

if str='' then exit;

if str [1] ='X'

then begin sost: =1; delete (str,1,1) end

else begin

if str [1] ='V' then begin sost: =2; delete (str,1,1) end

else begin

if str [1] ='I' then begin sost: =3; delete (str,1,1) end

else begin sost: =4; exit; end; end; end;

while Length (str) <>0 do begin

case sost of

1: if str [1] ='X'

then begin sost: =5; delete (str,1,1) end

else begin

if

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: