Xreferat.com » Рефераты по информатике и программированию » Шифрование и дешифрование данных при помощи симметричных криптографических алгоритмов

Шифрование и дешифрование данных при помощи симметричных криптографических алгоритмов

аналогичному алгоритму.


Из простейших процедур, имитирующих случайные числа, наиболее употребляем так называемый конгруэнтный способ, приписываемый Д.Х. Лемеру:


G(n+1)=KGn+C MOD M


В нем каждое последующее псевдослучайное число G(n+1) получается из предыдущего Gn умножением его на К, сложением с С и взятием остатка от деления на М. Весь фокус здесь в том, чтобы подобрать хорошие значения К, С и М. Например, выбрав закон генерации последовательности G(N+1) = Ent (sqr(2)*Gn) на IBM PC при формате представления чисел с плавающей запятой IEEE в 4 байта, получим псевдослучайные ряды, обязательно заканчивающиеся циклами с периодами длиной всего лишь 1225 и 147 в зависимости от начального заполнения. Разумнее вычисления вести в целых числах. Для них было установлено, что при С=0 и М=2**N наибольший период М/4 достигается при K=3+8*i или K=5+8*i и нечетном начальном числе. При достаточно больших К ряд производит впечатление случайного.


Конгруэнтные датчики ПСЧ для гаммирования


Одним из хороших конгруэнтных генераторов является линейный конгруэнтный датчик ПСЧ. Он вырабатывает последовательности псевдослучайных чисел T(i), описываемые соотношением


T(i+1) = (A*T(i)+C) mod m,


где А и С - константы, Т(0) - исходная величина, выбранная в качестве порождающего числа. Очевидно, что эти три величины и образуют ключ.

Такой датчик ПСЧ генерирует псевдослучайные числа с определенным периодом повторения, зависящим от выбранных значений А и С. Значение m обычно устанавливается равным 2n , где n - длина машинного слова в битах. Датчик имеет максимальный период М до того, как генерируемая последовательность начнет повторяться. По причине, отмеченной ранее, необходимо выбирать числа А и С такие, чтобы период М был максимальным. Как показано Д. Кнутом, линейный конгруэнтный датчик ПСЧ имеет максимальную длину М тогда и только тогда, когда С - нечетное, и А mod 4 = 1.


Целочисленные последовательности


Интересный класс генераторов случайных чисел неоднократно предлагался многими специалистами целочисленной арифметике, в частности Джорджем Марсалиа и Арифом Зейманом. Генераторы этого типа основаны на использовании последовательностей Фибоначчи. Классический пример такой последовательности {0, 1, 1, 2, 3, 5, 8, 13, 21, 34...}. За исключением первых двух ее членов, каждый последующий член равен сумме двух предшествующих. Если брать только последнюю цифру каждого числа в последовательности, то получится последовательность чисел {0, 1, 1, 2, 5, 8, 3, 1, 4, 5, 9, 4...} Если эта последовательность применяется для начального заполнения массива большой длины, то, используя этот массив, можно создать генератор случайных чисел Фибоначчи с запаздыванием, где складываются не соседние, а удаленные числа. Марсалиа и Зейман предложили ввести в схему Фибоначчи "бит переноса", который может иметь начальное значение 0 или 1. Построенный на этой основе генератор "сложения с переносом" приобретает интересные свойства, на их основании можно создавать последовательности, период которых значительно больше, чем у применяемых в настоящее время конгруэнтных генераторов.

Датчики М-последовательностей


М-последовательности также популярны, благодаря относительной легкости их реализации.

М-последовательности представляют собой линейные рекуррентные последовательности максимального периода, формируемые k-разрядными генераторами на основе регистров сдвига. На каждом такте поступивший бит сдвигает k предыдущих и к нему добавляется их сумма по модулю 2. Вытесняемый бит добавляется к гамме.

Строго это можно представить в виде следующих отношений:


r1:=r0 r2:=r1 ... rk-1:=rk-2

r0:=a0 r1 Е a1 r2 Е ... Е ak-2 rk-1

Гi:= rk-


Здесь r0 r1 ... rk-1 - k однобитных регистров, a0 a1 ... ak-1 - коэффициенты неприводимого двоичного полинома степени k-1. Гi - i-е значение выходной гаммы.

Период М-последовательности исходя из ее свойств равен 2k-1.

Другим важным свойством М-последовательности является объем ансамбля, т.е. количество различных М-последовательностей для заданного k. Эта характеристика приведена в таблице:


k Объем ансамбля
5 6
6 8
7 18
8 16
9 48
10 60
16 2048

Метод псевдослучайного гаммирования


Этот метод похож на метод гаммирования, но к нему добавляется еще модификация ключа. В данном случае ключ модифицируется по случайному закону по формуле


Шифрование и дешифрование данных при помощи симметричных криптографических алгоритмов


где С mod 4 = 1,

N+1 - максимальное псевдослучайное число этого ряда,

Шифрование и дешифрование данных при помощи симметричных криптографических алгоритмов - ключ для предыдущей итерации;

Ki- ключ для новой итерации.


Метод цепочечного гаммирования


Метод аналогичен методу гаммирования, но ключ изменяется по-другому. Суть метода: имеется последовательность ключей (например, 16). Каждый ключ содержит в себе 12 разрядов ключевого числа для кодирования и 4 разряда для указания следующего ключа в цепочке. После использования ключа берем новый по адресу, указанному в текущем ключе.

Список литературы


Гатчин Ю.А., Коробейников А.Г. Основы криптографических алгоритмов. Учебное пособие. - СПб.: СПбГИТМО(ТУ), 2002. - 29 с.

Главная редакция физико-математической литературы, 1974. 324с.

Иванов М.А. Криптографические методы защиты информации в компьютерных системах и сетях. – М.: КУДИЦ-ОБРАЗ, 2001, - 368 с.

Кон П. Универсальная алгебра. - М.: Мир. - 1968. 351 с

Коробейников А. Г. Математические основы криптографии. Учебное пособие. СПб: СПб ГИТМО (ТУ), 2002. 41 с

Левин Максим. Криптография. Руководство пользователя. - М.: Познавательная книга плюс, 2001, - 320 с.

Левин М. Криптография. Руководство пользователя. - М.: Познавательная книга плюс, 2001, - 320 с.

Молдовян А.А., Молдовян Н.А., Советов Б.Я. Криптография. – СПб.: Издательство "Лань", 2001, - 224 с.

Панасенко С.П. Алгоритмы шифрования. Специальный справочник BHV-Санкт-Петербург, 2009. – 576с.

Смирнов В.И. Курс высшей математики, том III, часть I – М:. Наука,

Чмора А.Л. Современная прикладная криптография. 2-е изд. – М.: Гелиос, АРВ, 2002. – 256 с. ил.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: