Xreferat.com » Рефераты по информатике и программированию » Технология извлечения знаний из нейронных сетей: апробация, проектирование ПО, использование в психолингвистике

Технология извлечения знаний из нейронных сетей: апробация, проектирование ПО, использование в психолингвистике

довольно сложная задача.

Дж. Осгуд с соавторами в работе под названием “Измерение значений” ввели для решения этой задачи метод “семантического дифференциала” (обзор литературы дан в работе [86]). Они предложили искать координаты слова в пространстве свойств следующим образом. Был собран некоторый набор слов (например, "мама", "папа" и т.д.) и набор признаков к этим словам (таких, как близкий - далекий, хороший - плохой, и т.д.), и опрашиваемые люди оценивали слова по этим шкалам. Затем отыскивался минимальный набор координат смысла, по которому можно восстановить все остальные. Было выделено 3 базовых координаты смысла, по которым все остальные можно предсказать достаточно точно: сильный - слабый, активный - пассивный и хороший - плохой. С другой стороны, выявились огромные различия между культурами, например, у японцев и американцев очень многие вещи имеют существенно разные смысловые характеристики.

Существуют различные способы выделения основных признаков (базовых координат), например, метод главных компонент, факторный анализ и др. В данной работе используются нейросетевые методы. Разработка технологии сокращения описания и извлечения знаний из данных с помощью обучаемых и разреживаемых нейронных сетей началась в 90-е годы XX века и к настоящему времени созданы библиотеки нейросетевых программ даже для PC, позволяющие строить полуэмпирические теории в различных областях.

В данной работе с помощью нейроимитатора исследовались индивидуальные смысловые пространства. Был создан вопросник, в котором определяются координаты (от –10 до 10) 40 слов по 27 параметрам и были проведены эксперименты на нескольких людях.

Слова:

Папа

Мама

Болезнь

Детский сад

Школа

Собака

Кот

Воробей

Ворона

Апельсин

Яблоко

Дед Мороз

Дерево

Змея

Еда

Тортик

Горшок

Брат

Сестра

Работа

Деньги

Квартира

Муж (жена)

Дедушка

Бабушка

Музыка

Президент

Парламент

Политика

Наука

Политик

Ученый

Теорема

Выборы

Коммунизм

Доказательство

Россия

Америка

Китай

Израиль

Религия

Бог


Плотный – рыхлый

Молодой – старый

Светлый – темный

Разумный – неразумный

Холодный – горячий

Быстрый – медленный

Близкий – далекий

Пугливый – бесстрашный

Страшный – не страшный

Спокойный – беспокойный

Веселый – грустный

Удобный – неудобный

Красивый – некрасивый

Опасный – безопасный

Приятный – неприятный

Ручной – дикий

Утонченный – грубый

Умный – глупый

Шумный – тихий

Ласковый – грубый

Большой – маленький

Дружественный – враждебный

Мягкий – твердый

Добрый – злой

Активный – пассивный

Хороший – плохой

Сильный – слабый

В экспериментах отыскивался минимальный набор координат смысла, по которому можно восстановить все остальные с точностью до тенденции (т.е. с точностью до 3 баллов). Это делалось при помощи нейросетевого имитатора NeuroPro. Следует отметить, что предсказание с точностью до 3 баллов фактически соответствует переходу от 21-балльных шкал (от –10 до 10) к традиционным 7-балльным (от –3 до 3).

С помощью NeuroPro возможно получение показателей значимости входных сигналов для принятия нейросетью решения, показателей чувствительности выходного сигнала сети к изменению входных сигналов, показателей значимости и чувствительности по отдельным примерам выборки.

За начальную архитектуру была взята слоистая нейронная сеть, состоящая из трех слоев по 10 нейронов в каждом. Далее проводились последовательно следующие операции.

Обучение нейронной сети с максимальной допустимой ошибкой обучения 0.49 балла (такая ошибка приводит к тому, что после округления ошибка обучения фактически равна 0). Как показал опыт, такой ошибки обучения чаще всего достаточно для предсказаний с требуемой точностью, то есть для ошибки обобщения, меньшей 3 баллов.

Из входных сигналов выбирался наименее значимый и исключался, после чего проводилось повторное обучение нейросети с новыми входными сигналами и прежней ошибкой обучения.

Эта процедура проводилась до тех пор, пока нейросеть могла обучиться. В результате этих операций были получены минимальные определяющие наборы признаков (т.е. наборы входных сигналов, оставшиеся после сокращения их числа).

Для разных людей получены очень разные результаты (первые результаты представлены в [87]), совсем непохожие на результаты Осгуда. Вот типичные примеры:

Определяющий набор признаков 1-го человека (размерность 7):

Умный – глупый, шумный – тихий, разумный – неразумный, плотный – рыхлый, дружественный – враждебный, страшный – не страшный, опасный – безопасный.

2-го человека: сильный – слабый, приятный – неприятный, опасный – безопасный, страшный – не страшный, дружественный – враждебный, удобный – неудобный (размерность 6).

3-го человека: приятный – неприятный, опасный – безопасный (размерность 2). Представляет интерес, что Осгудовские признаки почти не представлены в большинстве наборов. В связи с этим было решено проверить, можно ли предсказать значения произвольно выбранных признаков при помощи набора Осгуда (ошибка обучения в экспериментах допускалась ±0.49 балла). Практически во всех случаях нейронные сети обучались с приемлемой ошибкой обучения, но ошибка обобщения в экспериментах со скользящим контролем (нейронные сети обучались по всем словам, кроме 2-х – 3-х, а потом тестировались на этих словах) часто была недопустимо велика (5-9 баллов). После этого проводились следующие эксперименты: нейронная сеть обучалась предсказывать значения параметров по уже определенному минимальному набору признаков на одной половине слов, далее она тестировалась на словах из другой половины.

При этом для большинства слов нейронные сети давали удовлетворительные прогнозы по всем параметрам (с точностью до 3 баллов), но почти во всех случаях обнаруживались одно - два слова, для которых сразу по нескольким признакам ошибка нейронных сетей была очень велика.


5.2. MAN-многообразия


Итак, для каждого человека обнаруживается многообразие сравнительно малой размерности, в небольшой окрестности которого лежат почти все слова.

При осмыслении этого возникает гипотеза, связанная с тем, что отношение человека к большинству вещей, событий и т.д. не индивидуально, а сформировано культурой, в которой этот человек рос, его окружением и поэтому зависит от сравнительно небольшого числа признаков. В связи с этим и могли появиться многообразия малой размерности, в небольшой окрестности которых лежат почти все слова. Назовем их ман–многообразиями (от немецкого неопределенного местоимения man (некто)). Вероятно, для каждой определенной культуры имеется небольшое количество различных ман-многообразий, специфичных для нее. В ходе воспитания человек присваивает одно из типичных ман–многообразий. Например, определяющий набор признаков 3-го человека представляется основным набором признаков и для животных: опасность и приятность имеют прямой химический аналог и соответствуют уровню адреналина, эндорфинов и энкефалинов.

Обнаружено, что у большинства людей есть слова, которые неожиданно "выпадают" из ман-многообразий,   отстоят от них довольно далеко. Вероятно, это слова, с которыми у человека связаны какие-либо сильные переживания, ощущения, что приводит к появлению "индивидуальности" оценки или же слова, свое истинное отношение к которым человек пытается скрыть. Есть еще один тип таких точек, специфичных для каждой отдельной культуры (или субкультуры), особое отношение к которым сформировано самой культурой (например, в России – Великая Отечественная, в мусульманских странах – бог). Интерпретация "индивидуальных точек" может дать полезную психодиагностическую информацию, а анализ особенных точек культуры - культурологическую. Возможно проведение культурологических исследований путем сравнения особенностей и закономерностей для различных культур.

Уже первые опыты показывают, что набор индивидуальных точек дает яркий и узнаваемый портрет личности, а общекультурные особенности пока не были изучены, так как требуют более масштабных исследований.

В перспективе результаты работы могут быть использованы во многих областях, где требуется информация о психологии и психическом здоровье человека, могут быть применены для создания компьютерных психодиагностических методик, выявляющих и анализирующих индивидуальные особенности и скрытые напряжения и т.п.

Литература


Лорьер Ж.-Л. Системы искусственного интеллекта. М.: Мир, 1991. - 568с.

Искусственный интеллект. В 3-х кн. Кн. 2. Модели и методы: Справочник / Под ред. Д.А.Поспелова. М.: Радио и связь, 1990. - 304с.

Хафман И. Активная память. М.: Прогресс. 1986. - 309с.

Бонгард М.М. Проблема узнавания. М.: Наука, 1967. - 320с.

Загоруйко Н.Г. Методы обнаружения закономерностей. М.: Наука, 1981. - 115с.

Гаек П., Гавранек Т. Автоматическое образование гипотез. М.: Наука, 1984. - 278с.

Гуревич Ю.В., Журавлев Ю.И. Минимизация булевых функций и и эффективные алгоритмы распознавания // Кибернетика. - 1974, №3. - с.16-20.

Искусственный интеллект. В 3-х кн. Кн. 1. Системы общения и экспертные системы: Справочник / Под ред. Э.В.Попова. М.: Радио и связь, 1990. - 464с.

Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Основы моделирования и первичная обработка данных. М.: Финансы и статистика, 1983. - 471с.

Загоруйко Н.Г. Гипотезы компактности и l-компактности в алгоритмах анализа данных // Сибирский журнал индустриальной математики. Январь-июнь, 1998. Т.1, №1. - с.114-126.

Браверман Э.М., Мучник И.Б. Структурные методы обработки эмпирических данных. М.: Наука, 1983. - 464с.

Дуда Р., Харт П. Распознавание образов и анализ сцен. М.: Мир, 1976. - 512с.

Цыпкин Я.З. Информационная теория идентификации. М.: Наука, 1995. - 336с.

Айзерман М.А., Браверман Э.М., Розоноер Л.И. Метод потенциальных функций в теории обучения машин. - М.: Наука, 1970. - 240с.

Россиев Д.А. Самообучающиеся нейросетевые экспертные системы в медицине: теория, методология, инструментарий, внедрение. Автореф. дисс. … доктора биол. наук. Красноярск, 1996.

Горбань А.Н. Обучение нейронных сетей. М.: изд. СССР-США СП "ParaGraph", 1990. - 160с. (English Translation: AMSE Transaction, Scientific Siberian, A, 1993, Vol. 6. Neurocomputing, рp.1-134).

Горбань А.Н., Россиев Д.А. Нейронные сети на персональном компьютере. Новосибирск: Наука, 1996. - 276с.

Нейроинформатика / А.Н. Горбань, В.Л. Дунин-Барковский, А.Н. Кирдин и др. Новосибирск: Наука, 1998. - 296с.

Ежов А.А., Шумский С.А. Нейрокомпьютинг и его применение в финансах и бизнесе. М.: МИФИ, 1998.

Миркес Е.М. Нейрокомпьютер: проект стандарта. Новосибирск, Наука, 1998.

Kwon O.J., Bang S.Y. A Design Method of Fault Tolerant Neural Networks / Proc. ICNN 1994, Seoul, Korea. - Vol.1. - pp. 396-400.

Горбань А.Н., Царегородцев В.Г. Методология производства явных знаний из таблиц данных при помощи обучаемых и упрощаемых искусственных нейронных сетей // Труды VI Международной конференции "Математика. Компьютер. Образование" / - М.: Прогресс-традиция, 1999. - Ч.I. - С.110-116.

Царегородцев В.Г. Извлечение явных знаний из таблиц данных при помощи обучаемых и упрощаемых искусственных нейронных сетей // Материалы XII Международной конференции по нейрокибернетике. - Ростов-на-Дону. Изд-во СКНЦ ВШ. 1999.- 323с. - С.245-249.

Reed R. Pruning Algorithms - a Survey / IEEE Trans. on Neural Networks, 1993, Vol.4, №5. - pp.740-747.

Depenau J., Moller M. Aspects of Generalization and Pruning / Proc. WCNN'94, 1994, Vol.3. - pp.504-509.

Гилев С.Е., Коченов Д.А., Миркес Е.М., Россиев Д.А. Контрастирование, оценка значимости параметров, оптимизация их значений и их интерпретация в нейронных сетях // Доклады III Всероссийского семинара “Нейроинформатика и ее приложения”. – Красноярск, 1995.- С.66-78.

Weigend A.S., Rumelhart D.E., Huberman B.A. Generalization by Weights-elimination with Application to Forecasting / Advances in Neural Information Processing Systems. Morgan Kaufmann, 1991. Vol.3. - pp. 875-882.

Yasui S. Convergence Suppression and Divergence Facilitation for Pruning Multi-Output Backpropagation Networks / Proc. 3rd Int. Conf. on Fuzzy Logic, Neural Nets and Soft Computing, Iizuka, Japan, 1994. - pp.137-139.

Yasui S. A New Method to Remove Redundant Connections in Backpropagation Neural Networks: Inproduction of 'Parametric Lateral Inhibition Fields' / Proc. IEEE INNS Int. Joint Conf. on Neural Networks, Beijing, Vol.2. - pp.360-367.

Yasui S., Malinowski A., Zurada J.M. Convergence Suppression and Divergence Facilitation: New Approach to Prune Hidden Layer and Weights in Feedforward Neural Networks / Proc. IEEE Int. Symposium on Circuits and Systems 1995, Seattle, WA, USA. Vol.1. - pp.121-124.

Malinowski A., Miller D.A., Zurada J.M. Reconciling Training and Weight Suppression: New Guidelines for Pruning-efficient Training / Proc. WCNN 1995, Washington, DC, USA. Vol.1. - pp.724-728.

Krogh A., Hertz J. A Simple Weight Decay can Improve Generalization / Advances in Neural Infromation Processing Systems 4, 1992. - pp. 950-957.

Kamimura R., Nakanishi S. Weight-decay as a Process of Redundancy Reduction / Proc. WCNN, 1994, Vol.3. - pp.486-489.

Karnin E.D. A Simple Procedure for Pruning Back-propagation Trained Network / IEEE Trans. on Neural Networks, June 1990. Vol. 1, No.2. - pp.239-242.

Le Cun Y., Denker J.S., Solla S.A. Optimal Brain Damage / Advances in Neural Information Processing Systems 2. - Morgan Kaufmann, 1990. - pp.598-605.

Hassibi B., Stork D.G., Wolff G. Optimal Brain Surgeon: Extensions and Performance Comparisions / Advances in Neural Information Processing Systems 6, 1994. – pp.263-270.

Гилев С.Е. Алгоритм сокращения нейронных сетей, основанный на разностной оценке вторых производных целевой функции // Нейроинформатика и ее приложения : Тезисы докладов V Всеросс. семинара, 1997. Красноярск. КГТУ. 1997. - 190с. - C.45-46.

Tanpraset C., Tanpraset T., Lursinsap C. Neuron and Dendrite Pruning by Synaptic Weight Shifting in Polynomial Time / Proc. IEEE ICNN 1996, Washington, DC, USA. Vol.2. - pp.822-827.

Kamimura R. Principal Hidden Unit Analysis: Generation of Simple Networks by Minimum Entropy Method / Proc. IJCNN 1993, Nagoya, Japan. - Vol.1. - pp.317-320.

Mozer M.C., Smolensky P. Using Relevance to Reduce Network Size Automatically / Connection Science. 1989. Vol.1. - pp.3-16.

Mozer M.C., Smolensky P. Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assessment / Advances in Neural Network Information Processing Systems 1, Morgan Kaufmann, 1989. - pp.107-115.

Watanabe E., Shimizu H. Algorithm for Pruning Hidden Units in Multi Layered Neural Network for Binary Pattern Classification Problem / Proc. IJCNN 1993, Nagoya, Japan. - Vol.1. - pp.327-330.

Yoshimura A., Nagano T. A New Measure for the Estimation of the Effectiveness of Hidden Units / Proc. Annual Conf. JNNS, 1992. - pp.82-83.

Murase K., Matsunaga Y., Nakade Y. A Back-propagation Algorithm which Automatically Determines the Number of Association Units / Proc. IJCNN, Singapore, 1991. - Vol.1. - pp.783-788.

Matsunaga Y., Nakade Y., Yamakawa O., Murase K, A Back-propagation Algorithm with Automatic Reduction of Association Units in Multi-layered Neural Network / Trans. on IEICE, 1991. Vol. J74-DII, №8. - pp.1118-1121.

Hagiwara M. Removal of Hidden Units and Weights for Back Propagation Networks / Proc. IJCNN 1993, Nagoya, Japan. - Vol.1. - pp.351-354.

Majima N., Watanabe A., Yoshimura A., Nagano T. A New Criterion "Effectiveness Factor" for Pruning Hidden Units / Proc. ICNN 1994, Seoul, Korea. - Vol.1. - pp. 382-385.

Царегородцев В.Г. Производство полуэмпирических знаний из таблиц данных с помощью обучаемых искусственных нейронных сетей // Методы нейроинформатики. – Красноярск: Изд-во КГТУ, 1998. - 205c. - C.176-198.

Sietsma J., Dow R.J.F. Neural Net Pruning - Why and How / Proc. IEEE IJCNN 1988, San Diego, CA. Vol.1. - pp. 325-333.

Sietsma J., Dow R.J.F. Creating Artificial Neural Network that Generalize / Neural Networks, 1991. Vol.4, No.1. - pp.67-79.

Yamamoto S., Oshino T., Mori T., Hashizume A., Motoike J. Gradual Reduction of Hidden Units in the Back Propagation Algorithm, and its Application to Blood Cell Classification / Proc. IJCNN 1993, Nagoya, Japan. - Vol.3. - pp.2085-2088.

Sarle W.S. How to measure importance of inputs? SAS Institute Inc., Cary, NC, USA, 1999. ftp://ftp.sas/pub/neural/importance.html

Goh T.-H. Semantic Extraction Using Neural Network Modelling and Sensitivity Analisys / Proc. IJCNN 1993, Nagoya, Japan. - Vol.1. - pp.1031-1034.

Howlan S.J., Hinton G.E. Simplifying Neural Network by Soft Weight Sharing / Neural Computations, 1992. Vol.4. №4. - pp.473-493.

Keegstra H., Jansen W.J., Nijhuis J.A.G., Spaanenburg L., Stevens H., Udding J.T. Exploiting Network Redundancy for Low-Cost Neural Network Realizations / Proc. IEEE ICNN 1996, Washington, DC, USA. Vol.2. - pp.951-955.

Chen A.M., Lu H.-M., Hecht-Nielsen R. On the Geometry of Feedforward Neural Network Error Surfaces // Neural Computations, 1993. - 5. pp. 910-927.

Гордиенко П. Стратегии контрастирования // Нейроинформатика и ее приложения : Тезисы докладов V Всероссийского семинара, 1997 / Под ред. А.Н.Горбаня. Красноярск. КГТУ. 1997. - 190с. - C.69.

Gorban A.N., Mirkes Ye.M., Tsaregorodtsev V.G. Generation of explicit knowledge from empirical data through pruning of trainable neural networks / Int. Joint Conf. on Neural Networks, Washington, DC, USA, 1999.

Ishibuchi H., Nii M. Generating Fuzzy If-Then Rules from Trained Neural Networks: Linguistic Analysis of Neural Networks / Proc. 1996 IEEE ICNN, Washington, DC, USA. Vol.2. - pp.1133-1138.

Lozowski A., Cholewo T.J., Zurada J.M. Crisp Rule Extraction from Perceptron Network Classifiers / Proc. 1996 IEEE ICNN, Washington, DC, USA. Plenary, Panel and Special Sessions Volume. - pp.94-99.

Lu H., Setiono R., Liu H. Effective Data Mining Using Neural Networks / IEEE Trans. on Knowledge and Data Engineering, 1996, Vol.8, №6. – pp.957-961.

Duch W., Adamczak R., Grabczewski K. Optimization of Logical Rules Derived by Neural Procedures / Proc. 1999 IJCNN, Washington, DC, USA, 1999.

Duch W., Adamczak R., Grabczewski K. Neural Optimization of Linguistic Variables and Membership Functions / Proc. 1999 ICONIP, Perth, Australia.

Ishikawa M. Rule Extraction by Successive Regularization / Proc. 1996 IEEE ICNN, Washington, DC, USA. Vol.2. - pp.1139-1143.

Sun R., Peterson T. Learning in Reactive Sequential Decision Tasks: the CLARION Model / Proc. 1996 IEEE ICNN, Washington, DC, USA. Plenary, Panel and Special Sessions Volume. - pp.70-75.

Gallant S.I. Connectionist Expert Systems / Communications of the ACM, 1988, №31. – pp.152-169.

Saito K., Nakano R. Medical Diagnostic Expert System Based on PDP Model / Proc. IEEE ICNN, 1988. – pp.255-262.

Fu L.M. Rule Learning by Searching on Adapted Nets / Proc. AAAI, 1991. - pp.590-595.

Towell G., Shavlik J.W. Interpretation of Artificial Neural Networks: Mapping Knowledge-based Neural Networks into Rules / Advances in Neural Information Processing Systems 4 (Moody J.E., Hanson S.J., Lippmann R.P. eds.). Morgan Kaufmann, 1992. - pp. 977-984.

Fu L.M. Rule Generation From Neural Networks / IEEE Trans. on Systems, Man. and Cybernetics, 1994. Vol.24, №8. - pp.1114-1124.

Yi L., Hongbao S. The N-R Method of Acquiring Multi-step Reasoning Production Rules Based on NN / Proc. 1996 IEEE ICNN, Washington, DC, USA. Vol.2. - pp.1150-1155.

Towell G., Shavlik J.W., Noodewier M.O. Refinement of Approximately Correct Domain Theories by Knowledge-based Neural Networks / Proc. AAAI'90, Boston, MA, USA, 1990. - pp.861-866.

Towell G., Shavlik J.W. Extracting Refined Rules from Knowledge-based Neural Networks / Machine Learning, 1993. Vol.13. - pp. 71-101.

Towell G., Shavlik J.W. Knowledge-based Artificial Neural Networks / Artificial Intelligence, 1994. Vol.70, №3. - pp.119-165.

Opitz D., Shavlik J. Heuristically Expanding Knowledge-based Neural Networks / Proc. 13 Int. Joint Conf. on Artificial Intelligence, Chambery, France. Morgan Kaufmann, 1993. - pp.1360-1365.

Opitz D., Shavlik J. Dynamically Adding Symbolically Meaningful Nodes to Knowledge-based Neural Networks / Knowledge-based Systems, 1995. - pp.301-311.

Craven M., Shavlik J. Learning Symbolic Rules Using Artificial Neural Networks / Proc. 10 Int. Conf. on Machine Learning, Amherst, MA, USA. Morgan Kaufmann, 1993. - pp.73-80.

Craven M., Shavlik J. Using Sampling and Queries to Extract Rules from Trained Neural Networks / Proc. 11 Int. Conf. on Machine Learning, New Brunswick, NJ, USA, 1994. - pp.37-45.

Medler D.A., McCaughan D.B., Dawson M.R.W., Willson L. When Local int't Enough: Extracting Distributed Rules from Networks / Proc. 1999 IJCNN, Washington, DC, USA, 1999.

Craven M.W., Shavlik J.W. Extracting Comprehensible Concept Representations from Trained Neural Networks / IJCAI Workshop on Comprehensibility in Machine Learning, Montreal, Quebec, Canada, 1995.

Andrews R., Diederich J., Tickle A.B. A Survey and Critique of Techniques for Extracting Rules from Trained Artificial Neural Networks / Knowledge Based Systems, 1995, №8. - pp.373-389.

Craven M.W., Shavlik J.W. Using Neural Networks for Data Mining / Future Generation Computer Systems, 1997.

Craven M.W., Shavlik J.W. Rule Extraction: Where Do We Go From Here? Department of Computer Sciences, University of Wisconsin, Machine Learning Research Group Working Paper 99-1. 1999.

Michalski R.S. A Theory and Methodology of Inductive Learning / Artificial Intelligence, 1983, Vol.20. – pp.111-161.

McMillan C., Mozer M.C., Smolensky P.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: