Xreferat.com » Рефераты по информатике и программированию » Расчет нагрузок с помощью ЭВМ

Расчет нагрузок с помощью ЭВМ

F= 60*24=1440м2 - площадь цеха.


Росв=19*60*24=27,36 квт.

__________

Spi = Ppi2+Qpi2

Расчетные нагрузки всех потребителей складываются. Результаты расчета электрических нагрузок цеха сведены в таблицу 2.1.


Spi

Ipi= 

3*Uн


In=Ip+Inycк наиб (много электроприемников).

1n=Iр-1н наиб +1пуск наиб(мало приемников),

-где In- пиковый ток.

I пуск наиб - пусковой ток наибольшего по мощности двигателя;

In наиб - номинальный ток наибольшего по мощности двигателя;

1р - расчетный ток двигателя;

1пуск наиб = 5*1н наиб.

2.2. Расчет электрических нагрузок фабрики.

В практике проектирования систем электроснабжения сетей до 1000 В и выше применяют различные методы определения электрических

нагрузок.

Расчет электрических нагрузок фабрики произведем по установленной мощности и коэффициенту спроса, так как определение расчетной силовой магрузки, по этому методу является приближенным и поэтому его применение рекомендуется для предварительных расчетов и определение электрических нагрузок.

Расчетную нагрузку однофазных по режиму работы приемников определяют но формуле:


Рр = Кс,а * Рном; (2.5)


Qp=Pp*tg; (2.6)


________

Sр= Pp2+Qp2;


Где Кc,a коэффициент спроса по активной мощности, принят по Taблице 22 [2];

Рн м - номинальная (установленная) мощность электроприемника,

кВ .

tg - соответствует cos данной группы приемников, взят из табл.22 [2]

Sp полная мощность, кВа.

Пример расчета нагрузок для насосной станции 1 подъема:


Рр =194*0,9 =174,6 кВт;


Qp= 174,6*0,75 == 130,9 кВар;

_____________

Sp= l30,952 +174,62 =218,2кВа.


Расчетные нагрузки для остальных приемников электрической энергии рассчитываются аналогичным образом, поэтому сведены в таблицу 2.3

После расчета нагрузок приемников электрической энергии рассчитываются потери в цеховых трансформаторных подстанциях (ТП). Потери активной и реактивной энергии в цеховых ТП принимаются 2% и 10% (сooтветственно) от полной нагрузки всех цехов напряжением до 1000В.

Потери в цеховых ТП составляют:

Р= 0,02*2667 = 53,34 кВт;

Q= 0,1*2667 = 266,7 кВар;

После расчета электрических нагрузок электроприемников напряжением до 1000В и расчета электрических нагрузок электроприемников на­пряжением выше 1000В их суммируют с учетом коэффициента разновременности максимумов нагрузки отдельных групп. Значение коэффициенты разновременности максимумов нагрузки можно приближенно принимать равным 0,9 [6].

Сумарная полная нагрузка по фабрике с учетом коэффициента раз-новременности максимума:

__________________________

Sp= (Рр +Pp)2 + (Qp^ +Qp)2 * Кр. м. (2.7)


Где Рр расчетная активная мощность приемника электрической энергии напряжением до 1000В, кВт;

Qp - расчетная реактивная мощность приемника электрической энергии напряжением до 1000В, кВар;

Pp - расчетная активная мощность приемника электрической энергии напряжением выше 1000В, кВт;

Qp расчетная реактивная мощность приемника электрической энергии напряжением выше 1000В,кВар;

Кр. м = 0,9 - коэффициент разновременности максимумов нагрузки из [6].

________________

Sp = (4415,2)2+(2815,42)2 *0,9 = 4712,82.

После расчета электрических нагрузок фабрики составляется сводная таблица (2.3) электрических нагрузок отдельных приемников электрической энергии.


2.3. Расчет электрических нагрузок с применением ЭВМ.

Расчет электрических нагрузок - одна из тех операций, которые наиболее легко поддаются автоматизации с помощью ЭВМ. Предложено несколько алгоритмов и программ машинного расчета электрических нагрузок, однако наиболее простым является алгоритм расчета трехфазных электрических нагрузок, разработанный мной.

В основу этого алгоритма положен метод упорядоченных диаграмм. Особенность алгоритма заключается в том, что он позволяет за один прием определить расчетные нагрузки для любого количества элементов цеховой электрической сети (ЦЭС) с неограниченным количеством приемников электроэнергии. Алгоритм разработан с учетом иерархичности структуры цеховых сетей и реализуется на ЭВМ любою класса.

Исходная информация для расчета электрических нагрузок накапливается а специальном оперативном массиве Н, число строк которого равно количеству ступеней распределения электроэнергии. Максимальное количество ступеней распределения электроэнергии ( трансформаторы, шинопроводы, магистрали, силовые распре­делительные пункты) определяются конкретной программой и в данном случае принято равным 10. Количество столбцов принято равным шести, что вытекает из сущности метода упорядоченных диаграмм.

IIо каждому приемнику электроэнергии с переменным графиком нагрузки (с коэффициентом использования Ки<0,6) для всех ступеней ЦЭС, через которые он получает питание, в столбцах соответственно накапливаются данные номинальная мощность Рном, квадрат номинальной мощности Рном2, средние активные Рср и реактивные Qcp нагрузки. По каждому приемнику электроэнергии с практически постоянным графикомнагрузки (Ки>=0,6) - средние активные Рср и реактивные Qcp нагрузки.


Вводить необходимо следующие показатели по порядку :


1.Количество приемников (общее).

2.Ступень.

3.Группа.

4.Количество однотипных приемников.

5.Рном одного приемника.

6.К(и) - коэффицент использования.

7.tg . - тангенс .


Результаты расчета для примеров находятся в приложении.


2.4. Выбор числа, мощности и расположения цеховых трансформаторных подстанций низковольтной сети.


Число трансформаторов выбирается в зависимости от условий окружающей среды, мощности потребителей, категорийности и режима работы приемников электроэнергии. Мощность цеховых трансформаторов в нормальных условиях должна обеспечивать питание всех приемников промышленных предприятий. Так как в цехе имеются потребители разных категорий надежности, требуется определить коэффициент загрузки трансформаторов средневзвешенный, по которому будет определятся число трансформаторов:


КзI*PpI+КзII*PрII+КзIII*РрIII'

Kзсв= ; (2.8)

РрI+РрII+РрIII PpI


РрI - мощность потребителей 1 категории (60%);

PpII - 40%- мощность потребителей 2 категории;

PpIII - мощность потребителей 3 категории;

KзI =0,7коэффициент загрузки трансформаторов 1 категории;

KзII =0,85 коэффициент загрузки трансформаторов 2 категории;

KзIII=0 коэффициент загрузки трансформаторов 3 категории.


Номинальная мощность трансформаторов определяется по удельной плотности нагрузки:


0.7*60+0.85*40

Кз св = ;

60+40


Принимаю номинальную мощность трансформатора Sнэ=160 квА. Определяем число трансформаторов, требующихся для передачи полной мощности потребителям:


Sp 346.81

=  =  =0.24; (2.9)

F 1440


Принимаю 3 трансформатора мощностью по 160 квА ТСЗ - 160/10. Так помещение пожароопасное, то в цехе целесообразно применение cyxoго трансформатора.


2.5. Выбор числа, мощности и расположения цеховых трансформаторных подстанций высоковольтной сети.


Минимально возможное число тансформаторов:


Рр

Nmin= —————— + N (2.11)

Кзсв*Sнэ


где Pр расчетная активная низковольтная нагрузка, кВт из табл.31

Кз.св =0,7 - средневзвешенный коэффициент загрузки, из [6].

N - добавка до целого числа.

Sн.э =- 630 кВа - эффективная мощность трансформаторов при удельной плотности нагрузки до 0,2 кB*A/м2,из [6]

2250.6

Nmin = -——— = 5,1 + 0,9 = 6 трансформаторов;

0.7*630


Экономически оптимальное число трансформаторов:


Noпt = Nmin + m; (2.12)


Где m дополнительно установленные трансформаторы, принимается по рис.4-6[6]


Noпt=6+0=6 трансформаторов.


Максимальная реактивная мощность, которую целесообразно передать через трансформаторы:

_________________________________

Qmx1m = (Noon * Кзсв * Suum)2 - Pp2; (2.13)


__________________

Qmx1m = (6*0,7*630)2-2250,62 =1391,44 кВар;


Суммарная мощность конденсаторных батарей на напряжение до 1000В:


Qнк1=Qp - Qmax1m; (2.14)


где Qp - расчетная реактивная мощность приемника электричеcкой энергии без учета потерь в трансформаторах из табл.31

Qнк1 =1262 -1391,44 = 129,4Квар;


Так как расчете Qнк 0, тo установка батарей конденсаторов при выборе оптимального числа трансформатров не требуется.

Определяг коэффициент загрузки трансформаторов:

Sр

Кз= ; (2.15)

Nsном,т


Sp --полная низковольтная нагрузка из таб. кВа;

n - количество устанавливаемых трансформаторов;

S ном,т номинальная мощность трансформаторов, кВа;


Пример расчета коэффициента загрузки Кз для фабрики:


1758,75

Кз = ------------ = 0.7;

4*630


Принимаем к установке на фабрике, а именно, в цехе рудоподготовки и цехе обогащения четыре трансформатора, по два в каждом цеху, марки ТМ 630/6.


Паспортные данные трансформаторов взяты из табл:


Ubh 6кВ Ixx = 2%

Uhh = 0,4кВ; Раз = 7,6кВт

Рхх = 1,42кВ;

Uкк = 5,5 %;.


Результаты выбора трансформаторов для остальных приемников электрической энергии и расчета коэффициента загрузки производится аналогично и сведен в табл .2.4

3 ВЫБОР СХЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ ЦЕХОВ.

3.1 Выбор схемы и расчет низковольтной цеховой сети.

Так как мощность потребителей большая и присутствуют потребили 1 категории, то потребители запитываются с шин трансформатора. В цехе принимаю радиальную схему электроснабжения с одной трансформаторной подстанцией, включающей в себя два трансформатора. Так как помещение пожароопасное, то питающие про­водики выбираю типа АПРТО, проводники прокладываются в стальных трубах. Выбор питающих проводников по экономической плотности не производится, так как выбранное сечение проводов и жил кабелей в 2-3 раза превышают выбранные по нагреву расчетным током. В нормальном и аварийном режимах питающие линии должны удовлетворять условиям:


Кпр*Iдоп1  Io; (3.1)


Кпр*Кпер*Iдоп I ав; (3.2)


где Кпр коэффициент, учитывющий особенности прокладки;


Кпр=1 - если прокладывается 1 кабель;


Кпр=0,9- если прокладывается 2 кабеля;


Iдоп - длительно допустимый ток выбранного проводника;


Io номинальный ток;

Кпер = 1,3- коэффициент перегрузки;

Iaв - аварийный ток.

Проверка по согласованию с действием защиты производится после выбора защитных устройств, пункт 6.1.

Номинальный ток единичного потребителя рассчитывается по формуле:


Рнно

Iо = —————— (3.3)

3 *Uhho * cos


где Pном - номинальная мощность единичного потребителя;


Uном - номинальное напряжение (0,4 кв).


Пример расчета для потребителя номер один токарно-винторезный.


При токе потребителя 35,ЗА выбираю кабель АПРТО сечением 10 мм2 (3 а; провода по 10 мм2), допустимый ток при таком сечении 47 А.(табл.2,15 [2] ). Все питающие проводники от единичных потребителей сводятся в распределительные пункты типа ПР с 6-8 отходящими линиями. К распределительным пунктам подходят кабели такого же типа, что и к единичным потребителям, но большего сечения. Для того, чтобы найти расчетный ток кабелей, подходящих к распределительным пунктам, составляется таблица, аналогичная таблице 2.1. "Расчет электрических нагрузок цеха", но потребители запитываются по группам как они подключаются к распределительным пунктам. После расчета таблицы находится ток кабеля:

Sp

Iпр=  (3.4)

3*Uн


Все данные по расчету тока кабеля к распределительным пунктам сведены в табл.3.1 Выбор питающих проводников сведен в табл. 3.2. После расчета таблицы находим расчетный ток, который протекает по проводу к распределительному пункту, например к ПР1:


74,4

Iо =  = 107.4 А

3*0.4


Пример выбора АВ для провода к ПР1;


Номинальный ток в проводе 107.4А; Выбираем АВ: А3710Б с Iном=160А. Ток установки электромагнитного расцепителя;

27

Iуэм = 1.25*(107,4 + 5 ) = 628,5 А

3*0.4*5


Ток теплового расцепителя:


Iт = 1.3*107,4=139,4А. (3.5)


3.2. Выбор схемы и расчет высоковольтной сети.

Система электроснабжения предприятия состоит из источников пи­тания и линий электропередач, осуществляющих подачу электроэнергии к предприятию, понижающих, распределительных и преобразователь­ных подстанций и связывающих их кабелей и воздушных линий.

Требования, предъявляемые к электроснабжению предприятий в ос­новном зависят от потребляемой ими мощности и характера электриче­ских нагрузок, особенностей технологии производства, климатических условий, загрязненности окружающей среды и других факторов.

Схемы и конструктивное исполнение системы электроснабжения должны обеспечивать возможность роста потребления электроэнергии предприятием без коренной реконструкции системы электроснабжения. Требования технологии оказывают решающее значение при определении степени надежности питания и построения схемы электроснабжения. Недоучет этих требований может привести как к недостаточному резервированию, так и к излишним затратам.

Источником электроснабжения обогатительной фабрики будет служить энергосистема, через ГПП, примыкаемой к территории обо­гатительной фабрики. От ГПП до распределительных устройств обо­гатительной фабрики электроэнергия передается по воздушным линиям электропередачи напряжением 6000 В.

Вторая линия электропередачи обеспечивает передачу электроэнергии от ГПП до КТПН насосной станции 1 подъема, с отпайками к распре­делительному устройству 6000В насосной станции оборотной воды. Каждая линия состоит из двух взаиморезервируюмых цепей. От распределительного устройства 6000В обогатительной фабрики по кабельным линиям 6000В осуществляется питание:

-двух высоковольтных электродвигателей бесшаровых мельниц мокрого самоизмельчения руды (по 630 кВт каждый);

-двух комплектных трансформаторных подстанций цеха рудоподготовки мощностью 630 кВа каждая;

-двух комплектных трансформаторных подстанций цехов обогащения и доводки мощностью 630 кВа каждая;

-одной комплектной трансформаторной подстанции мощностью 630 кВа для электрического освещения помещений и территории фабрики. По степени надежности электроснабжения фабрика и хвостовое хозяйство относятся к потребителям 2 категории.

Согласно параграфу 13.28 ПУЭ сборные шины в пределах РУ по экономической плотности тока не выбираются, поэтому выбор производим по допустимому току, равного току наиболее мощного присоединения, в данном случае генератора.

Наибольший ток нормального режима принимается при загрузке генератора до номинальной мощности Рном, при номинальном напряжении U cos ф ном:

Рном

Iном=Iном.г =  (3.3);

3*Vном *cos


где Рном - номинальная мощность генератора принимается по табл.2-1 [10],кВт;

Vном - номинальное напряжение сети ,кВ;

cos - коэффициент мощности номинальный , принимается по табл.2-1 [10]

4000

Iном = Iном.г = ————— = 458,7 А;

3*6.3*0.8


Принимаем шины прямоугольного сечения аллюминиевые 2(40*4) мм2,

Iдоп = 480А из таб.3.14[7].

Проверяем выбранное сечение шин по допустимому току в нормальном режиме:


Imax Iдоп;

Imax = 458,7А Iдоп = 480 А;

Проверка сборных шин на термическую стойкость производится после расчетов токов короткого замыкания .

Условие проверки:

Sт min Sт

где S т min - минимальное сечение по термической стойкости ,мм2;

S т - выбранное сечение шин, мм2.

Выбор сечения линий электропередач производим по экономической плотности тока:

Ip

F э = ---- ; (3.5)

э

где Iр - расчетный ток линии;

э - экономическая плотность тока из табл.5-7[5], мм2;

Fэ - ceчeн» ; линии, мм2.

по допустимому току нагрева в послеаварийном режиме:

1доп Iав;

где Iдоп - допустимый ток нагрева линии, принимается по табл.п 3.3 |7],А.


Определим расчетный ток линии:

Sp

Iр= ; (3.6)

3V*n


где Sp = 29 3,75кВА - расчетная мощность фабрики из таб. ;

V = 6,3 кВ подводимое напряжение;

n - количе во линий;


2948,75

Iр=  = 135,3 А;

3*6,3*2


Iав = 2*Iр = 2*135,3 =270А.


Определяем сечение линии электропередачи:


Ip 135,3

Fэ=  =  = 96,6 мм2

э 1.4


По таблице 3.3[7] выбираем воздушную линию из 2-х взаиморе-зервирующих цепей марки АС/16, Iдоп = ЗЗОА.

Проверяем выбранное сечение линии по нагреву током послеаварийном режиме:

Iдоп =ЗЗОА>Iав=270А


Sp = Sр пнc + Sp н об воды + Sp н 1 подъема; (3.7)


где Sp пн = 388,98 - расчетная мощность пульпонасосной станции из таб.З.1[7];


Sp н об воды = 919,83 кВА - расчетная мощность насосной станции оборотной воды из таб.3.1

Sp н 1 подьема = 218,25 кВА - расчетная мощность насосной станции 1 подъема и таб.3.1


Sp = 388,98 + 919,83 + 218,25 = 1527,06 кВА;


1527.25

Iр=  = 70 А;

3*6,3*2


Iрав = 2*Iр =2*70 = 140 А;


70

Рэ =  = 50 мм2

1.4


По таб.3.3[7] выбираю воздушную линию из двух взаимореэервиуемых линий марки АС 50/8, Iдоп = 210А.

Проверяем их по нагреву током в послеаварийном режиме:


Iдоп = 210А > I ав = 140А;

Sp = Sр н об воды + Spн 1 подъема; (3.8)

Sp =919,83+218,25 = 1138,88 кВА;

1138,88

Ip =  = 52,2 А;

2 3*6,3


Iав = 2*52,2 = 104.4А


52,2

Fэ =  = 37,3 мм2;

1.4


По таблице П.3.3 [7] выбираю сечение воздушной линии АС 35/6,2;

Iдоп =175.A

Проверяем линию по нагреву током в послеаварийном режиме:


Iдоп = 175А > Iав =104,4А.


Sp = 218.25А;


218,25

Ip=  = 10 А ;

23*6.3


Iав = 2*10 = 20 А;


10

Fэ =  = 7 мм2;

1.4

По табл.П.3.3 [7] выбираем сечение воздушной АС25/4,2; Iдоп = 135А. Проверяем линию по нагреву током в послеаварийном режиме:

Iдоп = 135А > Iав =20А.

Выбор сечения питающих кабелей производим:

- по экономической плотности тока;

- по допустимому току нагрева в нормальном и аварийном режимах;

- по термической устойчивости к токам КЗ.


Выбор кабельной линии производим по расчетному току трансформатора:


Spm (3.9)

Ip=  = 57,8 А;

3*Vн

где Spm = 630 кВА - расчетная мощность трансформатора из таб.3.2

Vн = 6,3 кВ

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: