Кибернетика

и e=0.

Внутренняя информация определяет развитие, целенаправленность и деятельность системы. Она может изменяться во времени, накапливаясь или разрушаясь. Для внутренней информации, так же как и для отображающей, можно ввести меру ценности. Та часть внутренней информации, которая не имеет ценности применительно к текущей задаче, может оказаться ценной в дальнейшем, находясь в зарезервированном состоянии.

Философия (определение 7) рассматривает информацию как определенную грань сущности материальных объектов и процессов. Отображающая, управляющая и внутренняя информация выражают эту сущность через описание, сигналы и возможности.

Передача генетической информации означает передачу внутренней информации, формирующей новую организацию. Организация описывается отображающей информацией. Применение термина информация требует большой осторожности и четкости ввиду его емкости и концептуальности.

Информационное описание определяет зависимость морфологических и функциональных свойств системы от качества и количества внутренней (о себе самой и среде) и внешней (поступающей из среды) информации. Напомним, что детерминированная система, действуя в строгом соответствии с заложенной в нее программой, теряет способность к действию, как только этот способ престает соответствовать условиям (среде). Целенаправленная система, выбирая способ действия в зависимости от среды, сохраняет неизменной цель. Частные аспекты информационного описания могут касаться отдельных процессов и подпроцессов. Множество частных описаний с большей или меньшей полнотой охватывает факторы организации деятельности системы в целом.

Связь между функциональным и информационным описаниями отражает эффективность и энтропию, закон изменения эффективности от времени отражает энтропийные свойства. Связь между морфологическим и информационным описаниями отражает изменение морфологических свойств во времени.

Совокупность функционального, морфологического и информационного описаний позволяет отразить главные свойства систем.


Вопросы и упражнения

  1. Что называют отображающей информацией? В каких единицах и каким образом ее измеряют? Приведите пример.

  2. Почему в определении 6 информацию можно считать начальным понятием? Как изучают информацию с этой точки зрения?

  3. В чем состоит организованность системы? Приведите пример.

  4. Что является количественной мерой организованности системы?

  5. В чем состоит ценность информации?

  6. Почему отображающая информация – концептуальное понятие, а ценность информации – конкретное понятие? Приведите пример.

  7. В чем суть информационного метаболизма? Приведите пример.

  8. Поясните понятие полного метаболизма системы на примере системы “колесо”.

  9. Что является источником информации, а что – носителем? Приведите пример.

  10. Поясните на примере системы “лекция” зависимость количества воспринимаемой информации от количества априорной информации.

  11. Что такое энтропия? Поясните ее значение для различных типов систем. Приведите примеры.


5.2. Взаимодействие систем


Описание систем и взаимодействия между системами требует ясного понимания и количественного критерия оценки того, что интуитивно воспринимается как близость, сходство, родство, а также различие.

Введем три класса сходства систем:

  • идентичность,

  • эквивалентность,

  • толерантность.

Пусть на множестве М задано разбиение

M=M1ИM2ИИMk, что МiЗMj=Ж для ij.

Oпределение 1. Отношение Т на множестве М называется отношением идентичности, если x находится в отношении T с y тогда и только тогда, когда x и y принадлежат каждому классу данного разбиения:

("x,yОM) [xTyЫ x,yОM1& x,yОM2&& x,yОMk].

Определение 2. Отношение Т на множестве М называется отношением эквивалентности, если x находится в отношении T с y тогда и только тогда, когда x и y принадлежат некоторому общему классу Мi данного разбиения, причем выполняются свойства рефлексивности, симметричности и транзитивности:

  1. xTx –истинно;

  2. xТyЮyTx;

  3. xTy & yTzЮxTz.

Определение 3. Отношение Т на множестве М называется отношением толерантности, если оно рефлексивно и симметрично.

Множество с заданным на нем отношением ({M, T}) называется (в зависимости от типа отношения) соответственно пространством идентичности, пространством эквивалентности и пространством толерантности.

Определение 4. Системы S1, S2, …, Sn идентичны, если на множестве систем (надсистеме) существует отношение идентичности.

Определение 5. Системы S1, S2, …, Sn эквивалентны, если на множестве систем (надсистеме) существует отношение эквивалентности. Эквивалентные системы обладают группой общих признаков.

Определение 6. Системы S1, S2, …, Sn толерантны, если на множестве систем (надсистеме) существует отношение толерантности. Толерантные системы имеют хотя бы один общий признак.

Количественный критерий сходства можно ввести в каждом классе метризацией пространств на основании признаков сходства.

Исходным пунктом метризации является морфологическое описание системы. Морфологическое сходство в определенной мере влияет на функциональное, но не наоборот. При идентичном функциональном описании системы могут иметь самую различную морфологию. Например, системы, описываемые дифференциальным уравнением вида

могут быть механическими, электрическими и биологическими.

Информационное описание определяет возможную точность оценки, как класса сходства систем, так и их близость внутри класса. Чем больше энтропия системы, тем не совершеннее оценка. Идентичные на первый взгляд системы могут оказаться эквивалентными из-за скрытости части свойств. Морфологическое сходство, однако, не означает функционально, поскольку незначительное количественное морфологическое отклонение может вызвать качественное функциональное различие.

В ряде случаев морфологическое различие обнаружить невозможно, и проявляется оно в существенном и легко наблюдаемом различии функциональных свойств. Например, у высших животных и у человека правая и левая половины мозга морфологически неразличимы. У высших животных они неразличимы и функционально. У человека функциональное различие легко обнаруживается.

К наиболее широкому классу сходства относится эквивалентность. Процесс развития системы связан с уменьшением сходства (углублением различия) с исходной системой за счет взаимного влияния морфологических признаков и функциональных свойств. Для сложной системы характерно сходство на определенном уровне декомпозиции, а выше и ниже этого уровня класс сходства может измениться не только из-за перестройки морфологии, но и из-за небольших количественных изменений.

Описание взаимодействия системы со средой должно учитывать возможность наличия в среде других систем, в том числе и однотипных. Пара (система, среда) или множество взаимодействующих систем образует надсистему, имеющую функциональное, морфологическое и информационное описания. Взаимодействие системы со средой и с другими системами внутри надсистемы классифицируется следующим образом:

  • Необходимое взаимодействие (взаимообусловленность).

  • Полностью согласованное взаимодействие (для естественных систем – строгое содружество).

  • Не полностью согласованное взаимодействие (нестрогое содружество).

  • Частично (детерминированно или стохастически) согласованное взаимодействие (коалиция).

  • Безразличное (отсутствие взаимодействия).

  • Частично-рассогласованное (детерминированно или статистически) взаимодействие (антикоалиция).

  • Не полностью рассогласованное взаимодействие (нестрогий конфликт).

  • Полностью рассогласованное взаимодействие.

  • Антагонистическое взаимодействие (строгий конфликт).

При полностью согласованном взаимодействии интересы систем (в смысле эффективности) совпадают, а при рассогласованном они противоположны, однако это не означает, что системы не могут существовать автономно и независимо. При не полностью согласованном взаимодействии, интересы систем совпадают частично, а при не полностью рассогласованном - частично противоречивы, однако может оказаться, что в первом случае существует область противоречий, а во втором – область общих интересов. Более того, существует рассогласованное взаимодействие, при котором системы не могут обойтись друг без друга (экологическая система “хищник- жертва”). Взаимообусловленность предполагает, что одна система не может существовать без другой, а антагонизм – что одна система не может существовать при наличии другой.

Взаимодействие может быть односторонним и смешанным. Например, увеличение эффективности системы Si влечет за собой увеличение эффективности системы Sj, а увеличение эффективности системы Sj не влияет на эффективность системы Si. Смешанные формы взаимодействия особенно характерны для частично согласованного и частично рассогласованного взаимодействия (коалиция и антикоалиция).


Вопросы и упражнения

  1. В чем состоит отношение идентичности? Какие системы считают идентичными? Приведите примеры идентичных систем.

  2. В чем состоит отношение толерантности? Какие системы считают толерантными? Приведите примеры толерантных систем.

  3. В чем состоит отношение эквивалентности? Какие системы считают эквивалентными? Приведите примеры эквивалентных систем.

  4. Приведите примеры идентичных систем с различной морфологией.

  5. Как связан выбор класса сходства систем с их энтропией?

  6. Какой из классов сходства систем является самым широким? Самым узким? Приведите примеры.

  7. Каким может быть взаимодействие системы с надсистемой и окружающей средой? Приведите примеры.


Глава 6. Методы описания структур


6.1 Структурные схемы


Формирование структуры является частью решения общей задачи описания системы. Структура выявляет общую конфигурацию системы, а не определяет систему в целом.

Если изобразить систему как совокупность блоков, осуществляющих некоторые функциональные преобразования, и связей между ними, то получим структурную схему, в обобщенном виде описывающую структуру системы. Под блоком обычно понимают, особенно в технических системах, функционально законченное и оформленное в виде отдельного целого устройство. Членение на блоки может осуществляться исходя из требуемой степени детализации описания структуры, наглядности отображения в ней особенностей процессов функционирования, присущих системе. Помимо функциональных, в структурную схему могут включаться логические блоки, позволяющие изменять характер функционирования в зависимости от того, выполняются или нет некоторые заранее заданные условия.

Структурные схемы наглядны и вмещают в себя информацию о большом числе структурных свойств системы. Они легко поддаются уточнению и конкретизации, в ходе которой не надо изменять всю схему, а достаточно заменить отдельные ее элементы структурными схемами, включающими не один, как раньше, а несколько взаимодействующих блоков.

Однако, структурная схема – это еще не модель структуры. Она с трудом поддается формализации и является скорее естественным мостиком, облегчающим переход от содержательного описания системы к математическому, чем действительным инструментом анализа и синтеза структур.


Воапросы и упражнения

  1. Постройте структурную схему системы “троллейбус-водитель-пассажир”. Выделите цветом функциональные и логические блоки.

  2. Постройте структурную схему системы “компьютер”. Какой тип описания (функциональный, информационный, морфологический) соответствует этой схеме?

  3. Укажите достоинства при описании структуры методом структурных схем.

  4. Почему структурная схема не является достаточно строгой моделью структуры системы?


6.2. Графы


Отношения между элементами структуры могут быть представлены соответствующим графом, что позволяет формализовать процесс исследования инвариантных во времени свойств систем и использовать хорошо развитый математический аппарат теории графов.

Определение. Графом называют тройку G=(M, R, P), где М- множество вершин, R-множество ребер (или дуг графа), Р- предикат инцидентности вершин и ребер графа. Р(x,y,r)=1 означает, что вершины x,yОM инцидентны (связаны, лежат на) ребру графа rОR.

Для того чтобы облегчить работу с графом, вершины его обычно нумеруют. Граф с пронумерованными вершинами называется отмеченным.

Каждое ребро графа связывает две вершины, называемые в этом случае смежными. Если граф отмечен, то ребро задается парой (i,j), где i и j – номера смежных вершин. Очевидно, что ребро (i,j) инцидентно вершинам i и j , и обратно.

Если все ребра графа заданы упорядоченными парами (i,j), в которых порядок расположения смежных вершин имеет значение, то граф называется ориентированным. Неориентированный граф не содержит ориентированных ребер. В частично ориентированном графе ориентированы не все ребра.

Геометрически графы изображают в виде диаграмм, на которых вершины отображаются точками, а ребра – отрезками, соединяющими смежные вершины. Ориентированное ребро задают отрезком со стрелкой.

Использование диаграмм настолько распространено, что обычно, говоря о графе, представляют себе именно диаграмму графа. Графы часто задают матрицей смежности (инцидентности). Это квадратная матрица, размерность которой определяется количеством вершин в графе. Если вершины i и j связаны, то значение соответствующего элемента матрицы единица, в противном случае – ноль. Направление дуг графа можно задать, введя дополнительное обозначение (–1) для противоположного направления связи.

Если ребра графа имеют некоторые числовые характеристики связи, то такие графы называются взвешенными. В этом случае матрица инцидентности содержит веса соответствующих связей, знак перед числом определяет направление ребра.

Важной характеристикой структурного графа является число возможных путей, по которым можно пройти от одной вершины к другой. Чем больше таких путей, тем совершеннее структура, но тем она избыточнее. Избыточность обеспечивает надежность структуры. Например, разрушение 90% нервных связей головного мозга не ощущается и не влияет на поведение. Может существовать и бесполезная избыточность, которая в структурном графе изображается в виде петель.




Одна из вершин через серию связей с другими вершинами замыкается на себя, не имея побочного выхода (рис.5). Наличие петель означает нерациональное расходование ресурсов. Обследование большого числа структур различных систем показало, что наличие петель – не такое редкое явление, как может показаться на первый взгляд. Обычно петли могут изыматься из структуры без всякого ущерба для ее функциональных и информационных свойств. Множество подсистем, входящих в петлю, образует изолированную подсистему.


Вопросы и упражнения

  1. Что называют графом?

  2. Что означает выражение “вершины инцидентны ребру”?

  3. Какой граф называют ориентированным? Неориентированным? Частично ориентированным?

  4. Как графически изображают графы?

  5. Чем графы отличаются от структурных схем? В чем их преимущество перед структурными схемами?

  6. Как на графе изображается бесполезная избыточность структуры?

  7. Постройте граф для структуры системы “учебная группа”. Какого типа получился граф? Является ли он ориентированным? Взвешенным? Имеются ли в нем петли?


6.3. Классы структур


Выделим три класса структур: иерархические, неиерархические и смешанные. Для иерархических структур характерно наличие управляющих (командных) подсистем. В неиерархических структурах управляющие функции распределены между всеми элементами или группами элементов. Как правило, наличие иерархии является признаком высокого уровня организации, хотя могут существовать и неиерархические высокоорганизованные структуры. В функциональном отношении иерархические структуры более экономны. Избыточность структуры свидетельствует о нецелесообразном расходе ресурсов, который оправдан только в том случае, если целью является дальнейшее развитие системы, ее морфологическая перспектива.

Иерархической называется структура, удовлетворяющая следующим условиям:

  1. каждая подсистема является либо управляющей, либо подчиненной, либо (по отношению к разным подсистемам) то и другое одновременно;

  2. существует по крайней мере одна только подчиненная подсистема;

  3. существует одна и только одна управляющая подсистема;

  4. любая подчиненная подсистема непосредственно взаимодействует с одной и только одной управляющей (обратное не верно).

Обычно считается, что управляющая подсистема имеет две или более подчиненных. Иерархическую структуру в которой имеется по крайней мере одна управляющая и одновременно подчиненная подсистема, называют многоуровневой.

Для многоуровневых иерархических структур справедливо следующее:

  1. подсистема более высокого уровня имеет дело с более широкими аспектами поведения системы в целом;

  2. время преобразования входных компонент метаболизма в выходные увеличивается с увеличением уровня управляющей подсистемы;

  3. подсистемы более высоких уровней иерархической структуры имеют дело с более медленными аспектами поведения системы;

  4. с повышением уровня подсистем увеличивается удельный вес информационной компоненты метаболизма и ее роль в функциональной деятельности системы.

Неиерархические структуры являются производными от многосвязной структуры, в которой каждая подсистема непосредственно взаимодействует с любой другой.

Неиерархическими называются структуры, которые удовлетворяют следующим условиям:

  1. существует по крайней мере одна подсистема, которая не является ни управляющей, ни подчиненной;

  2. не существует подсистемы, которая является только управляющей;

  3. не существует подсистемы, которая является только подчиненной;

  4. любая подчиненная подсистема непосредственно взаимодействует более чем с одной управляющей (обратное необязательно).

Важная особенность неиерархической структуры состоит в том, что в ней нет подсистем, принимающих независимые от других подсистем решения. Кроме того, неиерархическая структура обычно обладает следующими свойствами:

  1. любая подсистема может влиять на все аспекты поведения системы;

  2. время преобразования входных компонент метаболизма в выходные слабо зависит от положения подсистемы в структуре;

  3. функции подсистем легче изменяются в процессе взаимодействия.

Введем понятие лидерства.

Лидирующей называется подсистема, удовлетворяющая следующим требованиям:

  1. подсистема не имеет детерминированного взаимодействия ни с одной подсистемой;

  2. подсистема является управляющей (при непосредственном или опосредованном взаимодействии) по отношению к части (наибольшему числу подсистем);

  3. подсистема либо не является управляемой (подчиненной), либо управляется наименьшим (по сравнению с другими) числом подсистем.

Лидирующих подсистем может быть больше одной, при нескольких лидирующих подсистемах возможна главная лидирующая подсистема. Подсистема высшего уровня иерархической структуры одновременно должна быть главной лидирующей, если же этого нет, то предполагаемая иерархическая структура либо неустойчива, либо не соответствует истинной структуре системы.

Смешанные структуры представляют собой различные комбинации иерархических и неиерархических структур. Стабильность структуры характеризуется временем ее изменения. Структура может изменяться без преобразования класса или преобразованием одного класса в другой. В частности, возникновение лидера в неиерархической структуре может привести к преобразованию ее в иерархическую, а возникновение лидера в иерархической структуре – к установлению ограничивающей, а затем детерминированной связи между лидирующей подсистемой и подсистемой высшего уровня. В результате этого подсистема высшего уровня заменяется лидирующей подсистемой, либо объединяется с ней, или иерархическая структура преобразуется в неиерархическую (смешанную).

Равновесными называются неиерархические структуры без лидеров. Чаще всего равновесными бывают многосвязные структуры. Равновесность не означает покомпонентной идентичности метаболизма, речь идет только о степени влияния на принятие решений.


Вопросы и упражнения

  1. Каким условиям должна удовлетворять иерархическая структура?

  2. Какие иерархические структуры называют многоуровневыми?

  3. Какие системы описываются многоуровневыми иерархическими структурами?

  4. Как связан информационный метаболизм подсистем более низкого уровня с функциональной деятельностью системы? Приведите пример.

  5. Проанализируйте структуру системы учебная группа. Является ли она иерархической? Избыточной? Почему?

  6. Приведите пример неиерархической структуры системы.

  7. Каким условиям удовлетворяют неиерархические структуры? Каковы их свойства?

  8. Какая подсистема называется лидирующей? Приведите примеры.

  9. Приведите примеры смешанных структур. Равновесных и неравновесных.


Глава 7. Связи


7.1. Классификация связей


Структура реализуется при помощи связей. Связями называются подсистемы (элементы), осуществляющие непосредственное взаимодействие между другими подсистемами (элементами) и не принимающие решений. Связи переносят компоненты метаболизма из одной пространственной области в другую. При этом возможны некоторые преобразования этих компонент. Связи подразделяются на прямые и обратные.

Прямые связи подразделяются на следующие подклассы:

  1. усиливающие (ослабляющие):

mвых=kmвх, где mвых, mвх –компоненты метаболизма, по которым осуществляется связь,

k- коэффициент связи (k>1-усиления, k<1 -ослабление).

  1. ограничивающие:

,

  1. запаздывающие:

mвых(t)=mвх(t-t1), где t1- время запаздывания,

  1. селектирующие – разделяющие множество входных процессов по некоторым классам,

  2. преобразующие:

mвых= Ф({mвх j}), j=1,…,n, где Ф – оператор преобразования.

Частным случаем преобразующих связей являются шумящие, среди которых важное значение имеют суммирующие и умножающие соответствующий входной компонент метаболизма на аналогичную ей по содержанию беспорядочную переменную. При наличии прямого контакта между взаимодействующими подсистемами взаимодействие может осуществляться без подсистемы связи.

Применяются различные формальные методы описания связей. В частности, одна из моделей связей содержит следующие компоненты: модель связи, модель согласования сигналов между передающими и принимающими элементами, модель преобразования сигнала в канале, модель поведения элемента под воздействием сигнала в канале.


Вопросы и упражнения

  1. Что называют связями при описании структуры системы?

  2. Приведите примеры прямой запаздывающей связи; обратной усиливающей связи; ограничивающей связи; селектирующей.

  3. Какие связи называют преобразующими?

  4. Приведите пример формального описания преобразующих связей.


    1. Обратные связи

Открытие инженерами принципа обратной связи явилось выдающимся в развитии техники. Процессы управления, адаптации самоорганизации самым непосредственным образом связаны с применением обратной связи, без них немыслимо существование живых систем. Обратная связь является динамическим фактором.


Рис 6. Принципиальная схема обратной связи.


Рассмотрим классификацию обратных связей. Прежде всего, выделим положительную и отрицательную обратные связи. Положительная обратная связь усиливает исходный процесс, отрицательная – ослабляет. В технике положительная обратная связь широко применяется для повышения чувствительности приборов, создания устойчивых колебательных процессов, поддержания какого-то процесса на заданном уровне.

Пример 1. Ламповый генератор электрических колебаний построен по принципу положительной обратной связи. 

Пример 2. В физиологических, психологических и социальных процессах положительная обратная связь является одним из ведущих факторов. Человек раздражен, он сознает свою раздраженность, страдает от этого и раздражается еще больше. Процесс раздражения нарастает, самоконтроль ослабевает, возникают предпосылки для усиления раздражения, в конце концов – наступает разрядка – человек выходит из себя.

Положительная обратная связь интенсифицирует процесс до тех пор, пока он не будет ограничен внутренними, или внешними условиями. Если бы не было ограничений, процесс с положительной обратной связью нарастал бы до бесконечности. Ограничения возникают из-за насыщения, когда истощаются средства или силы (заполняется объем, используется ресурс и т.д.) или вступают в действие новые факторы, вызванные нарастанием самого процесса.

Пример 3. Типичные случай самопроизвольного (спонтанного) возникновения положительной обратной связи в военных условиях – ночная перестрелка во время затишья, характерная для окопной войны. Стоит кому-то случайно выстрелить, как возникает перестрелка, которая достигает определенной интенсивности, а затем быстро затухает.

Существуют примеры безответственного или бессознательного применения механизма положительной обратной связи: паника при стихийных бедствиях, массовый испуг, стресс, подозрительность и т.п.

Положительная обратная связь может играть как организующую, так и дезорганизующую роль. Появление положительной обратной связи между случайными процессами создает ситуацию, при которой часть процессов будет стимулироваться. В результате может самопроизвольно возникнуть эффективная организация. С другой стороны, возникновение обратной связи в хорошо организованных системах может привести к противоположному результату. Начиная от невинных и малозначительных событий, таких как лавинообразное распространение моды в обществе, и кончая развитием необузданных экстремистских социальных тенденций, везде в какой либо форме проявилась положительная обратная связь.

Если положительную обратную связь можно считать стимулирующим фактором, то отрицательная обратная связь – регулирующий фактор. Отрицательная обратная связь тормозит исходный процесс, не дает ему чрезмерно нарастать, но ослабляет свое действие как только основной процесс спадает. В результате основной процесс поддерживается в каких-то пределах. В технике отрицательная обратная связь применяется очень широко, а в автоматизированных системах управления это, вероятно, основной рабочий фактор. Живые организмы не могли бы существовать без отрицательных обратных связей, которые есть во всех без исключения механизмах внутренней регуляции физиологических и психических процессов и поведения. Не меньшая роль отрицательных обратных связей и в общественных процессах.

Совместное действие положительной и отрицательной обратной связи может оказать сильное формирующее влияние на процессы для поддержания их уровня при случайных внешних воздействиях. Такие схемы могут оказывать как стимулирующее, так и тормозящее действие, они способны быстро ликвидировать возникающие флуктуации, поэтому часто применяются в технике, в частности в электронике, химической технологии, автоматике. Совместное действие множества связей (прямых и обратных) лежит в основе гомеостаза. Исследование и описание комбинированных схем обратной связи представляет большие трудности, особенно если их много. Если они возникают самопроизвольно, то их сложно выявить. Найти в многосвязных системах (типа биологических или социальных) отдельные каналы обратных связей можно только при тщательном исследовании.

Когда обратных связей много, возникает качественный скачок, система приобретает принципиально новые свойства. При этом раздельное рассмотрение связей иногда теряет смысл, так как их действие перестает быть самостоятельным.

Мы не располагаем адекватным математическим аппаратом для описания совместного действия множества обратных связей и вынуждены прибегать к обобщенному описанию при помощи внешних характеристик результирующих процессов. Динамический эффект системы обратных связей таков, что при малом числе они действуют стабилизирующим (организующим) образом, при большом числе могут действовать противоположно, вызывая неустойчивость, а при очень большом числе действуют гомеостатически, т.е. создают множество устойчивых состояний, между которыми существуют значительные области неустойчивости. Поскольку гомеостаз искусственных систем и живых организмов определяется обратными связями, изучение гомеостаза может быть средством познания обратных связей.

Положительные и отрицательные обратные связи могут быть гладкими и пороговыми. Гладкие обратные связи действуют во всем диапазоне изменения выходного процесса. Пороговая обратная связь действует, когда процесс превышает некоторое значение (нижний порог) или не достигает допустимого значения (верхний порог). Пока процесс не достиг нижнего порога (или не превысил верхний), обратной связи как бы не существует. Возможна двух пороговая схема, когда обратная связь действует в пределах нахождения выходного процесса и не действует за пределами порогов.

Пример 4. Появление в воздухе нескольких самолетов - нарушителей правил (режима) полетов может вызвать самовозбуждение недостаточно организованной системы ПВО. При низкой эффективности радиолокационной системы, если число нарушителей режима полетов превысит допустимый порог, будет одновременно поднято много перехватчиков, часть из них может оказаться неправильно опознанными, по ним будут подняты новые перехватчики и т.д., пока в воздухе не окажутся все дежурные истребители, или кто-то из ответственных не поймет в чем дело. В данном случае положительная одно-пороговая обратная связь с нижним порогом обусловлена ошибочными данными радиолокационного опознавания, а отрицательная обратная связь с нижним порогом – интеллектом лица, принимающего решения. В процессе нарастания числа самолетов в воздухе его недоверие к данным нарастало, однако решение он принял, когда число превысило порог.

В различных системах живых организмов пороговые обратные связи являются основным средством регулирования. Защитные механизмы легко преодолевают инфекцию, когда число носителей заболевания незначительно, но не справляются с ударной дозой. Нервное возбуждение носит пороговый характер. В человеческом поведении также часто проявляются пороговые свойства.

Следующий признак классификации обратных связей – форма оператора L. Выделяют обратную связь, которая реагирует на производную от выходного процесса (y). Пока у изменяется медленно, ничего не происходит. Когда у начинает изменяться со скоростью больше пороговой величины, включится обратная связь и будет оказывать тормозящее или стимулирующее действие. На уменьшение выходного процесса обратная связь не реагирует, если порог установлен по положительной производной.

Пример 5. Примером может служить процесс обучения. Фактор обратной связи – поведение обучаемых. Если поток информации (х) нарастает медленно, то восприятие (у) идет нормально, материал усваивается и реакция обучаемых положительна. Постепенное наращивание объема и сложности материала (плотности информации) никаких отрицательных последствий не вызывает. Однако, когда плотность информации превышает порог восприятия, усвоение прекращается, так как срабатывает отрицательная обратная связь. Реакция обучаемых заставляет снизить темп, иногда даже ниже того уровня, который предшествовал превышению порога.

Обратная связь может реагировать на вторую или третью производную, на функцию от выходного процесса и нескольких производных, на интеграл и так далее, вообще говоря на любую функцию.

До сих пор речь шла о двусторонних обратных связях, симметричных относительно направления изменения выходного процесса или его производных, то есть реагирующих как на увеличение, так и на уменьшение. Могут быть обратные связи, чувствительные только к увеличению или только к уменьшению выходного процесса – односторонние обратные связи. Обратная связь может быть положительной относительно выходного процесса и отрицательной относительно производной, возможны и другие комбинации.

Односторонние обратные связи также могут быть гладкими и пороговыми, с постоянным или переменным порогом. Характерным свойством односторонней обратной связи является то, что система практически не может за счет внутренних сил вернуться к исходному положению: она не имеет статической устойчивости. Превышение порога приводит к необратимым изменениям, в результате которых система может некоторое время находиться в неустойчивом состоянии, а затем прийти снова к устойчивому, но уже при другом состоянии выходного процесса.

Специфическая тенденция необратимости систем с односторонними обратными связями имеет большое значение в производственных и общественных процессах.

Следующая группа обратных связей отличается по времени воздействия. Обратные связи могут быть запаздывающими, опережающими и мгновенными (когда обратная связь действует одновременно с тем фактором, который ее вызывает). Все эти виды обратных связей используются в технике, биологии, общественных отношениях.

Динамика действия запаздывающих обратных связей разнообразна и может привести к неожиданным последствиям. В частности, они могут вызвать периодические процессы или оказать тормозящее действие. Смысл опережающей обратной связи состоит в прогностическом влиянии. Расхождение между реальным процессом и прогнозом вызывает отклонение, которое может привести к дестабилизации системы.

Пример 6. Одним из примеров опережающей обратной связи является контроль и планирование производственных процессов. Анализ хода производства выявляет прогрессивные тенденции, которые в будущем могут дать положительный эффект. Обратная связь (положительная) состоит в устранении вероятных препятствий. Это усиливает прогрессивные тенденции, превращая их в основные факторы развития производства, повышения производительности труда, распространения положительных социальных явлений. При помощи отрицательной обратной связи можно подавить вредные тенденции. Примерами положительной опережающей обратной связи в производстве могут служить внедрение рационализаторских предложений и изобретений, переподготовка и повышение квалификации личного состава – все это дает эффект в будущем. Бюрократизм, рутина, консерватизм могут сыграть роль оперержающей отрицательной обратной связи.

Мгновенные обратные связи действуют без запаздывания и без опережения. Термин “мгновенные” применяется условно и означает, что величина смещения во времени не имеет практического значения. Для реализации мгновенной обратной связи необходимо, чтобы время выявления изменений процесса было пренебрежимо мало.


Вопросы и упражнения

  1. В чем состоит значение открытия принципа обратной связи?

  2. Приведите примеры положительной и отрицательной обратной связи.

  3. Приведите примеры дезорганизующей роли обратной связи.

  4. Как в примере 2 использовать обратную связь для стабилизации процесса?

  5. Как происходит развитие системы при нарастании количества и интенсивности обратных связей?

  6. Какие обратные связи называются гладкими? Приведите пример.

  7. Какие обратные связи называются пороговыми? Приведите пример.

  8. Как обратные связи различают по форме L-оператора?

  9. Приведите пример двусторонних обратных связей.

  10. Приведите примеры запаздывающих, опережающих и мгновенных обратных связей.

Литература


  1. Перегудов Ф. И., Тарасенко Ф. П. Введение в системный анализ. - М.: Высшая школа, 1989, 367 с.

2. Николаев В. И., Брук В. М. Системотехника: методы и приложения.-Л.: Машиностроение, 1985, 199 с.

  1. Бусленко Н. П., Калашников В.В.,. Коваленко И.Н. Лекции по теории сложных систем. М: Сов. радио, 1973, 440 с.

  2. Бусленко Н. П.. Моделирование сложных систем. М.: Наука, 1978, 400 с.

  3. Острейковский В.А. Теория систем.-М.:Высш. шк., 1997.-240 с.


76


Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: