Xreferat.com » Рефераты по коммуникации и связи » Базисные структуры электронных схем

Базисные структуры электронных схем

Размещено на /

Содержание


Введение

1 Одиночные каскады

2. Дифференциальные усилители

3. Классификация способов перестройки параметров. Параметры управителей

4. Цифроуправляемые резисторы параллельной структуры

5. Влияние не идеальности электронных ключей на свойства базисных структур

6. Цифроуправляемые проводимости лестничного типа

Библиографический список


Введение


В общем случае объединение отдельных электронных элементов в систему представляет собой восходящую ветвь проектной процедуры. В этой связи уровень сложности синтеза структуры определяется глубиной детализации ее компонент. Действительно, если в качестве простейших элементов цепи выбрать транзисторы, резисторы и конденсаторы, то число возможных вариантов их объединения в систему оказывается несоизмеримо больше аналогичных вариантов, соответствующих уровню – операционный усилитель, резистор и конденсатор. Увеличение числа возможных вариантов решения конкретной задачи может повысить количество перспективных по совокупности критериев качества схемных конфигураций. В то же время очевидная функциональная полнота в силу чрезвычайно большого числа структурных и иных преобразований, связанных с процессом математических преобразований, заметно повышает степень риска.

Разумным компромиссом в создавшемся положении является стратегия декомпозиции общей задачи синтеза сложно-функциональных (СФ) блоков, выделения набора базисных структур, принцип построения которых базируется на достижениях базовых технологических ограничениях.

Простейшими базисными структурами являются одиночные каскады, дифференциальные усилители и, в первую очередь, операционные усилители (ОУ), а также резистивные и емкостные двухполюсники. При построении перестраиваемых устройств в состав таких структур должны входить управители, обеспечивающие целенаправленное изменение их параметров. Хорошо отработанные технологические процессы в микроэлектронике позволяют создавать как пассивные, так и активные управляющие многополюсники, реализующие принцип переменной крутизны. Исследование параметров и схем замещения таких устройств показывает, что их применение в качестве управителей требует создания специализированных базисных структур и, следовательно, нового класса обобщенных структур.

резистор дифференциальный усилитель

1. Одиночные каскады


Настоящий этап базисных структур необходим для создания обобщенных структур, анализ которых позволяет установить базовые (фундаментальные) ограничения, характерные для микросхемотехники на компонентном уровне. В зависимости от типа полупроводникового прибора (транзистора) различаются группы малосигнальных параметров, которые определяют их основные свойства. Однако всегда такие каскады делятся на инвертирующие, неинвертирующие и повторители напряжения (рис. 1, 2 и 3).


Базисные структуры электронных схем

а) б)

Рис. 1. Инвертирующие каскады с общим эмиттером (а) и общим истоком (б)


Базисные структуры электронных схем

а) б)

Рис. 2. Неинвертирующие каскады с общей базой (а) и общим затвором (б)


Базисные структуры электронных схем

а) б)

Рис. 3. Повторители напряжения:


а) эмиттерный; б) истоковый

Анализ свойств таких каскадов приводит к следующим основным результатам. Во-первых, коэффициенты передачи инвентирующих и неинвертирующих способов подключения источника входного сигнала совпадают и отличаются только знаком (свойство инверсии фазы активного элемента).

Для каскадов на биполярных транзисторах:


Базисные структуры электронных схем; (1)


– для каскадов на полевых транзисторах:


Базисные структуры электронных схем. (2)


Во-вторых, для повторителей напряжения:

– для каскада с общим коллектором:


Базисные структуры электронных схем; (3)


– для каскада с общим стоком:


Базисные структуры электронных схем. (4)


Независимо от способа включения транзистора в широком диапазоне частот передаточную функцию каскада можно представить в следующем приемлемом для практики виде


Базисные структуры электронных схем, (5)


где Базисные структуры электронных схем– коэффициент передачи каскада, определяемый одним из соотношений (1–4); Базисные структуры электронных схем – постоянная времени каскада, которая в зависимости от типа транзистора определяется одним из соотношений:


Базисные структуры электронных схем,(6)

Базисные структуры электронных схем, (7)


где Базисные структуры электронных схем– коэффициент передачи эмиттерного тока; Базисные структуры электронных схем, Базисные структуры электронных схем– дифференциальные сопротивления эмиттерного и коллекторного переходов; Базисные структуры электронных схем – объемное (эквивалентное) сопротивление области базы; Базисные структуры электронных схем– граничная частота передачи тока эмиттера; Базисные структуры электронных схем– емкость коллекторного перехода – для биполярных транзисторов; S – крутизна стоко-затворной характеристики; Rи – дифференциальное сопротивление участка цепи сток-исток; Базисные структуры электронных схем, Базисные структуры электронных схем – выходная и проходная емкости – для полевых транзисторов.

Из методических соображений отметим, что в этом случае уменьшается коэффициент передачи любой из схем, но также и увеличивается диапазон рабочих частот. Этот качественный вывод входит в структуру языка аналоговой схемотехники. Достаточно часто с целью упрощения и унификации математических соотношений используется понятие эквивалентной крутизны


Базисные структуры электронных схем или Базисные структуры электронных схем(8)


и эквивалентного сопротивления нагрузки


Базисные структуры электронных схем или Базисные структуры электронных схем. (9)


Тогда


Базисные структуры электронных схем.(10)


В каскадах с разделенной нагрузкой (рис. 4)


Базисные структуры электронных схем

а) б)

Рис. 4. Каскады с разделенной нагрузкой:


а) на биполярном и б) полевом транзисторах

Существует достаточно простая связь между соответствующими коэффициентами усиления которая практически всегда упрощает математические преобразования в обобщенных структурах.


Базисные структуры электронных схем, (11)


Отметим достаточно важные для формирования критериев синтеза структур следующие из приведенных соотношений свойства простейших каскадов. Во-первых, независимо от способа увеличения коэффициента передачи инвертирующего или неинвертирующего каскада пропорционально уменьшается его диапазон рабочих частот. Во-вторых, уменьшение постоянной времени (Базисные структуры электронных схем) и, следовательно, расширение диапазона рабочих частот за счет увеличения рабочего тока и напряжения имеет определенный и достаточно часто технологический предел. Наконец, каскады с разделенной нагрузкой даже при равенстве соответствующих коэффициентов передачи не могут обеспечивать одинаковые частотные свойства.


2. Дифференциальные усилители


Среди разнообразных базовых узлов функциональных устройств, СФ блоков и аналоговых микросхем среднего уровня интеграции особое место занимают дифференциальные усилители, которые являются базовыми активными элементами более сложных аналоговых и дискретно-аналоговых модулей СнК. Эволюционное развитие схемотехники и технологии этих активных элементов привело к созданию узкоспециализированных, но достаточно дешевых кристаллов либо IP блоков, выполняющих функции операционных усилителей и видеоусилителей.

Современные операционные усилители также представляют собой наиболее массовый класс аналоговых микросхем, который подразделяется на ОУ широкого применения, микромощные ОУ, малошумящие ОУ и высокоскоростные ОУ. Отличие их основных параметров обеспечивается не только применением специальных схемотехнических решений, но и потребляемым от источников питания током (рис. 5–7).


Базисные структуры электронных схем

Рис. 5. Шумовые свойства операционных усилителей


Базисные структуры электронных схем

Рис. 6. Частотные свойства операционных усилителей


Базисные структуры электронных схем

Рис. 7. Скоростные свойства операционных усилителей


Представленные зависимости получены на основании анализа современных ОУ фирмы Analog Devices, являющейся мировым лидером в этом классе аналоговых микросхем и технологии их производства. Как видно из графиков, наиболее «дорогими» с энергетической точки зрения являются высокоскоростные ОУ, характеризуемые в силу схемотехнических особенностей достаточно большим собственным шумом, который соизмерим с шумом микромощных ОУ. В то же время малошумящие ОУ по ряду параметров соизмеримы со своими микромощными и высокоскоростными аналогами.

Существующее соотношение параметров современных операционных усилителей открывает широкие перспективы в области создания на их основе прецизионных и экономичных схем самого широкого функционального назначения. Кроме этого, ОУ класса «широкого применения» практически всегда входят в состав различных БМК и специальных матриц, что позволяет реализовать специализированные микросхемы с уникальными свойствами.

Важный сектор в классе микромощных операционных усилителей занимают относительно дешевые изделия, которые при трехвольтовом питании потребляют ток от 12 до 500 мкА. Сравнение базовых параметров таких ОУ приведено на рис. 8. Показатель Базисные структуры электронных схем характеризует «экономичность».


Базисные структуры электронных схем

Рис. 8. Сравнительные оценки трехвольтовых ОУ


На этом уровне относительно хорошо выглядит «старый» отечественный ОУ 140УД12, который при указанном напряжении питания и приведенном показателе Базисные структуры электронных схем за счет программирования обеспечивает изменение потребляемого тока от 25 до 180 мкА. Рассмотренные активные элементы имеют относительно невысокие частотные свойства, их схемотехника всегда традиционна, а качественные показатели определяются различными технологиями и выбором оптимальных режимов работы компонентов.

С точки зрения решения широкого круга практических задач создания аналоговых и аналого-цифровых интерфейсов необходима схемотехника широкодиапазонных специализированных ОУ, ориентированных на конкретную технологию. Именно здесь оказываются востребованными многие новые архитектуры и структурные методы оптимизации отдельных каскадов [1, 7, 8]. Такие усилители на базе схем с собственной и взаимной компенсацией влияния их частоты единичного усиления обеспечивают принципиально новое качество РЭА [1].

Особое место среди активных элементов занимают видеоусилители, имеющие, как правило, единичный коэффициент передачи при высоких частотных свойствах (рис. 9).


Базисные структуры электронных схем

Рис. 9. Частотные и скоростные свойства видеоусилителей


Однако их входное сопротивление по инвертирующему входу значительно меньше, чем по неинвертирующему, что и объясняет невысокий коэффициент ослабления синфазного сигнала. Отличительной особенностью таких активных элементов является также относительно низкий собственный шум (рис. 10), что и привлекает к ним особое внимание.

Достижения субмикронной технологии и микросхемотехники привели к появлению ряда ОУ, обеспечивающих преобразование сигнала в области высоких и сверхвысоких частот. Однако достижение таких качественных показателей сопровождается резким увеличением потребляемой от источников питания мощности (ток покоя превышает 20 мА). Отмеченное делает проблематичным их использование в микросхемах высокого уровня интеграции, где отвод тепла приводит к принципиальным технологическим проблемам.


Базисные структуры электронных схем

Рис. 10. Шумовые свойства видеоусилителей


Введенный ранее показатель качества ОУ можно распространить и на другие параметры этих активных элементов. Действительно, характеризуют качество схемотехнических решений. Сравнение рассмотренных ранее активных элементов приведено на рис. 11.


Базисные структуры электронных схем (12)


Базисные структуры электронных схем

Рис. 11. Сравнение различных типов ОУ


В реальных системах связи, диагностики и автоматического управления линейные аналоговые устройства взаимодействуют с датчиками и АЦП, поэтому в диапазоне частот до 100 МГц при стандартном уровне опорного напряжения 2,5 В скорость нарастания в 10–100 В/мкс оказывается достаточной.

Так, относительно «старый» ОУ ОР-37 (140УД26), имеющий S=10B/мкс, при напряжении питания ±15 В обеспечивает на частоте 1 МГц максимальный уровень выходного напряжения 2,5 В. В этой связи для СнК и СФ блоков необходима разработка нового поколения ОУ, сочетающих широкодиапазонность с энергоэкономичными режимами их работы, а также дальнейшее совершенствование схемотехники функциональных устройств на их основе.


3. Классификация способов перестройки параметров. Параметры управителей


В высококачественных перестраиваемых устройствах целенаправленное изменение характеристик и параметров производится в основном цифроуправляемыми проводимостями (ЦУП), состоящими из набора резисторов и электронных ключей. Такие узлы (управители) в общем случае могут иметь произвольную структуру.

Наиболее технологичными для современной микроэлектроники являются параллельные ЦУП и резистивные лестничные матрицы типа R-2R, которые, наряду с дифференциальными усилителями, должны входить в состав базисных структур.

Принципиально построение перестраиваемых фильтров, корректоров возможно на основе любых схемных решений, выполненных средствами современной технологии. Однако в отличие от устройств с фиксированными параметрами, где относительно высокие качественные показатели можно в ряде случаев обеспечить параметрической оптимизацией в пространстве элементов цепи, в перестраиваемых схемах, это, как правило, достигается применением «хороших» структур. Такие структуры должны иметь высокие потенциальные возможности, обеспечивающие необходимые качественные показатели при любых, даже неблагоприятных, сочетаниях параметров, подвергающихся целенаправленному изменению. Многочисленные исследования показывают, что наилучшими качественными показателями в этом отношении характеризуются схемы с решающими усилителями [6, 11].

В схемах с решающими усилителями основная группа элементов перестройки в силу чрезвычайно низкого рассогласования на инвертирующем входе ОУ (узел bj) представляет собой набор источников тока, управляемых напряжением (ИТУН) [6], с крутизной преобразования (Ski) (рис. 12).

Узел Базисные структуры электронных схем принадлежит выходу ОУ или входу схемы. С точки зрения конечного результата безразлично, каким путем обеспечивается изменение


Базисные структуры электронных схем . (13)


Базисные структуры электронных схем

Рис. 12. Особенность управителей в схемах с решающими усилителями


Простейшим ИТУНом является трехполюсник, в продольной ветви которого включается резистор или конденсатор. Такой управитель (рис. 13) обеспечивает прямую перестройку параметров. Сущность «косвенной перестройки» [6] состоит в следующем. Выделим в ветви Y (рис. 13а) изменяемую yv и постоянную yc части проводимости. Используя теорему о компенсации, перейдем к цепи с управляемым источником ЭДС (рис. 13б):


Базисные структуры электронных схем. (14)


Базисные структуры электронных схем

Рис. 13. Переход от прямой (а) к косвенной (б) перестройке параметров


Для эквивалентности цепей необходимо обеспечить равенство токов и потенциалов.


Так как Базисные структуры электронных схем,

y = yc (1-хн), (15)

и, следовательно, изменение эквивалентного значения Y в цепи возможно через (рис. 14а), который обеспечивает предварительное масштабирование напряжения в структуре ИТУНа.


Базисные структуры электронных схемБазисные структуры электронных схем

Рис. 14. Косвенная перестройка параметров с масштабированием напряжения (а) и тока (б) в ARC-схемах с решающими усилителями


Аналогично можно воспроизвести вариант с масштабированием тока (рис. 14б). Приведенные выше соотношения наглядно иллюстрируют хорошо известное явление деформации затухания в мостовых RС-цепях при косвенной перестройке частоты полюса посредством разделения плеч, где резистивный делитель и электронный усилитель не обеспечивают зависимости Базисные структуры электронных схем от выходного напряжения Базисные структуры электронных схем. В схемах с решающими усилителями Базисные структуры электронных схем=0, поэтому косвенное изменение эквивалентной проводимости, как это показано на рис. 14, не приводит к деформации других параметров. Неидеальность ОУ приводит к тому, что потенциальный нуль на инвертирующем входе реализуется только с определенной степенью точности, поэтому при данном способе перестройки изменение других параметров, конечно, наблюдается. Однако оно проявляется через влияние основных параметров ОУ и существенно ослабляется последними.

Масштабирование напряжения (изменение напряжения на входе решающего блока через аен, так же как и масштабирование тока (изменение зарядного или выходного тока через ае1) может осуществляться в конкретных случаях либо резистивными делителями, либо усилителями напряжения (тока). Первый путь реализации можно назвать «пассивная косвенная перестройка», а второй – «активная косвенная перестройка». Можно указать еще один (комбинированный) способ управления параметрами, существо которого заключается в одновременном изменении не только хн (хI), но и проводимости Yc.

Наиболее простой, но не гарантирующий получения оптимального решения способ проектирования обсуждаемых устройств опирается на замену решающих усилителей в структурах с фиксированными параметрами на аналогичные блоки с перестраиваемыми параметрами [6]. Для выяснения степени равноценности замены необходимо рассмотреть решающие усилители с преобразователями напряжение-ток обобщенной структуры. Настоящие преобразователи могут использоваться как в цепи прямой передачи (рис. 15а), так и в контуре обратной связи ОУ (рис. 15б). Конкретный способ включения ИТУНа и тип проводимости Y0 зависят от характера выполняемой операции и в общем случае определяются структурой перестраиваемой схемы.


Базисные структуры электронных схем

а)


Базисные структуры электронных схем

б)

Рис. 15. Решающие усилители с преобразователями напряжение-ток в цепи прямой передачи (а) и контуре обратной связи (б) ОУ

Передаточные функции для схемы рис. 15а


Базисные структуры электронных схем (16)


и для схемы рис. 15б


Базисные структуры электронных схем(17)


показывают, что, наряду с крутизной короткого замыкания (Sk), определяющей совместно с Y0 математическую операцию Sk/Y0 или Y0/Sk, важнейшим параметром управителей является коэффициент их передачи на холостом ходу (Kx), характеризующий степень влияния коэффициента передачи (Базисные структуры электронных схем) и площади усиления (П) ОУ на качественные показатели проектируемого устройства.

Показатели качества цепи, определяющие ее частотный и динамический диапазон, для исследуемых схем имеют следующий вид:


Базисные структуры электронных схем (18)

Базисные структуры электронных схем (19)


и существенно зависят от значения Kx, поэтому сопоставление различных управителей должно сопровождаться анализом Kxmin .


4. Цифроуправляемые резисторы параллельной структуры


Результаты анализа решающих блоков показывают, что минимальное влияние неидеальностей активных элементов обеспечивается применением обычного набора переключаемых резисторов, обеспечивающих прямую перестройку (рис. 16).


Базисные структуры электронных схем

Рис. 16. Набор переключаемых проводимостей


Базисные структуры электронных схем

Рис. 17. Эквивалентная схема пассивного трехполюсника


Действительно,


Базисные структуры электронных схем (20)

Базисные структуры электронных схем (21)


Однако при большом диапазоне перестройки (Базисные структуры электронных схем) необходимы резисторы, номиналы которых существенно отличаются друг от друга. Последнее требование в практическом отношении часто реализовать затруднительно, по крайней мере, по двум причинам. Во-первых, диапазон переключаемых проводимостей ограничивается конечными значениями сопротивления электронных ключей как в открытом, так и в закрытом состояниях. Во-вторых, технологически сложно реализовать в микроэлектронном исполнении разрядные проводимости с широким диапазоном номиналов. В этой связи представляется целесообразным поиск схемных решений, направленный на устранение настоящих недостатков.

На рис. 17 представлена эквивалентная схема пассивного трехполюсника, где число параллельно соединенных Т-образных групп (Y1,Y2,Y3) может быть произвольным. Крутизна преобразования при коротком замыкании на выходе определяется выражением, из которого следует, что все проводимости Y1 или Y2 зависят от соотношения сопротивлений оставшихся ветвей. Отмеченное позволяет выделить два основных принципа реализации управляющих четырехполюсников с цифроуправляемыми проводимостями (табл. 1).


Таблица 1

Принципы реализации ЦУП

Принципиальная схема

управляющего четырехполюсника

Основные параметры
1

Базисные структуры электронных схем

Базисные структуры электронных схем

2

Базисные структуры электронных схем

Базисные структуры электронных схем


Первый принцип предусматривает преобразование входного напряжения посредством Y1 и Y3, а ЦУП включаются в ветви Y0 и Y2. В рамках второго принципа происходит масштабирование тока на Y2 и Y3, а ЦУП используется вместо Y0 и Y1 [6].

В приведенных в табл. 1 соотношениях для крутизны короткого замыкания и коэффициента холостого хода Базисные структуры электронных схемi и Базисные структуры электронных схемj определяют состояния соответствующих ключей и принимают значения 0 и 1, а k1 и k2 – вес отдельных групп ЦУП, моделирующих Y0,Y2 и Y0,Y1. В общем случае в рамках рассмотренных принципов целенаправленному изменению могут подвергаться весовые коэффициенты k1 и k2, устанавливающие, например, поддиапазон перестройки. При этом целесообразно применить ЦУП в ветви Y3, т.к. появляется возможность использовать «заземленные» ключи. Если усиленные неравенства не выполняются, то остаточные члены для k1 и k2:


Базисные структуры электронных схем (22)


необходимо учитывать при определении сопротивлений разрядных резисторов, вводить в закон управления или предусматривать другие меры обеспечения допустимой методической погрешности Sk1 и Sk2:


Базисные структуры электронных схем ( 23)

Базисные структуры электронных схем.(24)


Настоящие погрешности зависят от состояния электронных ключей, поэтому при большом диапазоне перестройки целесообразно рассматривать их максимальные значения, численно равные соответствующим остаточным членам (22).

Микроэлектронные резистивные наборы, предназначенные для специализированных устройств контрольно-измерительной техники, содержат проводимости, выполненные по двоичному закону. В этом случае


Базисные структуры электронных схем (25)


как для преобразования напряжения, так и для преобразования тока.

Базисные структуры электронных схемСоответствующим изменениям подвергаются выражения для методической погрешности. С учетом введенных методических погрешностей рассмотренные в табл. 1 коэффициенты холостого хода, определяющие качественные показатели решающих блоков, примут следующий вид:

– для четырехполюсника с преобразованием напряжения:


Базисные структуры электронных схем (26)


– для четырехполюсника с преобразованием тока:


Базисные структуры электронных схем(27)


Настоящие соотношения показывают, что при заданной методической погрешности Базисные структуры электронных схемS1 или Базисные структуры электронных схемS2 повышение Кх1 или Kх2 возможно выбором Базисные структуры электронных схемi и Базисные структуры электронных схемj. Однако повышение качественных показателей решающих усилителей применением «наилучших» кодовых комбинаций неизбежно снижает диапазон перестройки схемы, поэтому практическую оценку влияния ОУ на частотные характеристики проектируемых устройств целесообразно производить для наихудшего случая, когда


Базисные структуры электронных схем (28)

Базисные структуры электронных схем.(29)


Базисные структуры электронных схем

Рис. 18. Зависимость Кх управляющих четырехполюсников от диапазона перестройки D


На рис. 18 приведены зависимости Базисные структуры электронных схем от диапазона перестройки D при n=m для различных значений максимальной методической погрешности Базисные структуры электронных схемS для ИТУН с преобразованием тока (сплошные кривые) и с преобразованием напряжения (пунктирные кривые). Соотношения (28), (29) и их графическая интерпретация наглядно показывают, что при высокой методической точности наилучший результат обеспечивается управляющим четырехполюсником с масштабированием напряжения, и только при большом диапазоне перестройки и достаточно низкой точности можно использовать принцип преобразования тока. Целесообразно отметить, что вопрос выбора необходимой точности Базисные структуры электронных схемS должен решаться с учетом реализуемого шага и закона перестройки.


5. Влияние неидеальности электронных ключей на свойства базисных структур


При построении ЦУП в качестве коммутаторов чаще всего используются МДП ключи (рис. 19, 20).


Базисные структуры электронных схем

Рис. 19. Принципиальная (а) и эквивалентная (б) схемы i-й ветви

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: