Xreferat.com » Рефераты по коммуникации и связи » Цифровая система передачи непрерывных сообщений

Цифровая система передачи непрерывных сообщений

Размещено на /

СОДЕРЖАНИЕ


Введение

1. Структурная схема и характеристики цифровой системы передачи непрерывных сообщений

1.1 Источник сообщений

1.2 АЦП и ЦАП

1.3 Кодер и декодер корректирующего кода

1.4 Модулятор и демодулятор

1.5 Канал связи

2. Расчет параметров АЦП и ЦАП

3. Расчет информационных характеристик источника сообщений и первичных сигналов

3.1 Расчет информационных характеристик источника непрерывных сообщений

3.2 Расчет информационных характеристик сигнала на выходе АЦП

4. Расчет помехоустойчивости демодулятора дискретной модуляции

5. Выбор корректирующего кода и расчет помехоустойчивости системы связи с кодированием

7. Расчет эффективности системы связи

Заключение

цифровой непрерывный сообщение демодулятор помехоустойчивость

ВВЕДЕНИЕ


В настоящее время тяжело представить себе жизнь людей без систем передачи информации. С помощью систем передачи информации соединяются в одну структуру компьютерные, телефонные и другие сети различных структур, городов и предприятий. С каждым днем растут потребности в скорости передачи информации, а главное в степени ее защищенности. Использование цифровых линий передачи информации значительно повысило и скорость передачи информации, и степень ее защищенности за счет использования в них оптического волокна и меньшей восприимчивости к помехам цифровых сигналов. Существенное преимущество цифровых систем также в простоте их подключения к ЭВМ, что позволяет существенно расширить применение вычислительной техники в исследовании систем связи и в управлении ими. Для исследования систем связи современная теория связи использует как детерминированные модели сигналов, так и вероятностные модели для передаваемых сообщений, соответствующих им сигналов и помех (шумов) в канале. Вероятностный подход учитывает случайный (для получателя) характер передачи сообщений и помех в канале и позволяет определить оптимальные приемные устройства (обеспечивающие максимально возможное качество) и предельные показатели систем передачи сообщений (систем связи).


1. СТРУКТУРНАЯ СХЕМА И ХАРАКТЕРИСТИКИ ЦИФРОВОЙ СИСТЕМЫ ПЕРЕДАЧИ НЕПРЕРЫВНЫХ СООБЩЕНИЙ


Совокупность технических средств для передачи сообщений от источника к потребителю называется системой связи (рис.1.1).


Цифровая система передачи непрерывных сообщений

Рисунок 1.1 – Структурная схема ЦСП.


Важнейшими показателями работы системы связи являются скорость передачи (пропускная способность – так как эти две величины во всех системах связи связаны соотношением: пропускная способность > скорость передачи) и помехоустойчивость. Под помехоустойчивостью понимают способность системы противостоять вредному влиянию помех на передачу сообщений. Максимальное количество информации, которое может быть передано двоичным символом, получило название бит. Существуют и многие другие параметры, характеризующие с различных точек зрения качества системы связи. К ним относятся скрытность связи, надежность системы, габаритные размеры и масса аппаратуры, стоимость оборудования, эксплуатационные расходы и т. п.

Дадим описание каждого блока структурной схемы цифровой системы передачи непрерывных сообщений.


1.1 Источник сообщений


Совокупность знаков содержащих ту или иную информацию называют сообщением. Под информацией понимают совокупность сведений о каких-либо событиях, явлениях или предметах. Для передачи или хранения информации используются различные знаки, позволяющие выразить (представить) ее в некоторой форме.

Источник сообщения генерирует сигнал, предназначенный для дальнейшей передачи в канале связи. Этот сигнал должен содержать случайную составляющую, иначе он не будет нести никакой информации. В данной работе источник сообщений представляется в виде случайного процесса с нормальным распределением плотности вероятности мгновенных значений.

Кроме распределения плотности вероятности мгновенных значений основными характеристиками сигнала являются длительность сигнала Tc, его динамический диапазон Dc и ширина спектра Fc. Длительность сигнала Tc является естественным его параметром, определяющим интервал времени, в пределах которого сигнал существует. Динамический диапазон — это отношение наибольшей мгновенной мощности сигнала к той наименьшей мощности, которую необходимо отличать от нуля при заданном качестве передачи. Он выражается обычно в децибелах. Ширина спектра сигнала Fc – этот параметр дает представление о скорости изменения сигнала внутри интервала его существования. Спектр сигнала, в принципе, может быть неограниченным. Однако для любого сигнала можно указать диапазон частот, в пределах которого сосредоточена его основная энергия. Этим диапазоном и определяется ширина спектра сигнала. Можно также ввести более общую и наглядную характеристику – объем сигнала:


Vc=Tc Dc Fc (1.1)


Объем сигнала Vc дает общее представление о возможностях сигнала как переносчика сообщений, т.е. чем больше объем сигнала, тем большее количество информации можно поместить в этот сигнал и тем труднее такой сигнал передать по каналу связи [3].

1.2 АЦП и ЦАП


Цифровая система передачи непрерывных сообщений

Рис 1.1. Структурная схема АЦП.


Цифровая система передачи непрерывных сообщений

Цифровая система передачи непрерывных сообщенийЦифровая система передачи непрерывных сообщенийЦифровая система передачи непрерывных сообщенийРис 1.2. Структурная схема ЦАП.


В составе цифрового канала предусмотрены устройства для преобразования непрерывного сообщения в цифровую форму – аналогово-цифровой преобразователь на передающей стороне и устройство преобразования цифрового сигнала в непрерывный – ЦАП на приемной стороне. АЦП по средствам импульсно кодовой модуляции переводит сигнал из аналоговой формы в цифровую представленную в виде последовательности m-ичных кодовых комбинаций. На приемной стороне ЦАП восстанавливает исходное сообщение по принятым кодовым комбинациям. Более подробно АЦП и ЦАП будут рассмотрены в пункте 2.


1.3 Кодер и декодер корректирующего кода


На выходе АЦП наш сигнал является цифровым и представлен в двоичном коде. Однако этот код не является помехоустойчивым, поэтому между АЦП и модулятором включен кодер корректирующего кода, а между демодулятором и ЦАП - декодер корректирующего кода, для повышения помехозащищенности кода .

При кодировании происходит процесс преобразования элементов сообщения в соответствующие им числа (кодовые символы). Каждому элементу сообщения присваивается определенная совокупность кодовых символов, которая называется кодовой комбинацией. Совокупность кодовых комбинаций, обозначающих дискретные сообщения, образует код. Правило кодирования может быть выражено кодовой таблицей, в которой приводятся алфавит кодируемых сообщений и соответствующие им кодовые комбинации. Множество возможных кодовых символов называется кодовым алфавитом, а их количество m — основанием кода. Число разрядов n, образующих кодовую комбинацию, называется значностью кода, или длиной кодовой комбинации.

Декодирование состоит в восстановлении сообщения по принимаемым кодовым символам. Устройство, осуществляющее кодирование и декодирование, называют кодеком.


1.4 Модулятор и демодулятор


Так как сигнал является широкополосным и не приспособленным к передачи в канале связи то его моделируют и делают более приспособленным к передаче в канале связи. Модуляция производится путем изменения тех или иных параметров физического носителя по закону передаваемых сообщений.

При дискретной модуляции закодированное сообщение, представляющее собой последовательность кодовых символов, преобразуется в последовательность элементов (посылок) сигнала путем воздействия кодовых символов на переносчик. Посредством модуляции один из параметров переносчика изменяется по закону, определяемому кодом. При непосредственной передаче переносчиком может быть постоянный ток, изменяющимися параметрами которого являются величина и направление тока. Обычно в качестве переносчика, как и в непрерывной модуляции, используют высокочастотный переменный ток (гармоническое колебание). В этом случае можно получить АМ, ЧМ и ФМ.

В данной системе используется четырех позиционная ОФМ-4 модуляция.

Цифровая система передачи непрерывных сообщенийПереданное сообщение в приемнике обычно восстанавливается в такой последовательности. Сначала сигнал демодулируется. В системах передачи непрерывных сообщений в результате демодуляции восстанавливается первичный сигнал, отображающий переданное сообщение. Этот сигнал затем поступает на воспроизводящее или записывающее устройство. В системах передачи дискретных сообщений в результате демодуляции последовательность элементов сигнала превращается в последовательность кодовых символов, после чего эта последовательность преобразуется в последовательность элементов сообщения, выдаваемую получателю. Это преобразование называется декодированием. Операции демодуляции и декодирования – не просто операции обратные модуляции и кодированию. В результате различных искажений и воздействия помех пришедший сигнал может существенно отличаться от переданного. Поэтому всегда можно высказать несколько предположений о том какое именно сообщение передавалось. Задачей приемного устройства и является принятие решения о том, какое из возможных сообщений действительно передавалось источником. Та часть приемного устройства, которая осуществляет анализ приходящего сигнала и принимает решение о переданном сообщении, называется решающей схемой. На рисунке 1.3-1.5 представлена модель передачи сигнала с помощью ОФМ-4 модуляции. Устройство модулятора состоит из Элемента XOR , который сравнивает текущий и предыдущий биты. Он меняет значения с 1 и -1 или наоборот, если на текущий бит=1, и не меняет значения, если текущий бит=0. Далее сигнал накладывается на синусоиду. Демодулятор осуществляет детектирование, затем перемножение с сигналом, задержанным на длину 1 бита, результат фильтрует. Фиксируем результат в начале битового интервала и по его значению определяем значение передаваемого бита.

Цифровая система передачи непрерывных сообщений

Рис 1.3 Модель модулятора и демодулятора для передачи сигнала с помощью ОФМ-4.


Цифровая система передачи непрерывных сообщений

Рисунок 1.4 – Переданный и принятый сигналы.


Цифровая система передачи непрерывных сообщений

Рисунок 1.5 – Модулированный сигнал.

1.5 Канал связи


Линией связи называется среда, используемая для передачи сигналов от передатчика к приемнику. В системах электрической связи — это кабель или волновод, в системах радиосвязи — область пространства, в котором распространяются электромагнитные волны от передатчика к приемнику.

Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки А системы до точки В (рис. 1.1). Точки А и В могут быть выбраны произвольно, лишь бы между ними проходил сигнал. Если сигналы, поступающие на вход канала и снимающиеся с его выхода, являются дискретными (по состояниям), то канал называется дискретным. Если входные и выходные сигналы канала являются непрерывными, то и канал называется непрерывным. Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот. Видно, что канал может быть дискретным или непрерывным независимо от характера передаваемых сообщений. Более того, в одной и той же системе связи можно выделить как дискретный, так и непрерывный каналы. Все зависит от того, каким образом выбраны точки А и В входа и выхода канала.

Непрерывный канал связи можно характеризовать так же, как и сигнал, тремя параметрами: временем Tk, в течение которого по каналу ведется передача, динамическим диапазоном Dk и полосой пропускания канала Fk. Также в канале связи на сигнал накладываются помехи, обусловленные различными характеристиками среды распространения.


2. РАСЧЕТ ПАРАМЕТРОВ АЦП И ЦАП


Исходные данные для расчетов:

максимальная частота спектра первичного сигнала Цифровая система передачи непрерывных сообщений=6,5 кГц;

плотность вероятности мгновенных значений первичного сигнала p(b) –двухстороннее экспоненциальное распределение;

средняя мощность первичного сигнала Цифровая система передачи непрерывных сообщений=0,07 Вт;

коэффициент амплитуды первичного сигнала Цифровая система передачи непрерывных сообщений=9;

допустимое отношение сигнал/помеха на входе получателя Цифровая система передачи непрерывных сообщений=30 дБ;

допустимое значение сигнал/шум квантования Цифровая система передачи непрерывных сообщений=33 дБ;

в АЦП производится равномерное квантование.

Требуется:

- составить и определить структурные схемы АЦП и ЦАП ;

определить интервал дискретизации Цифровая система передачи непрерывных сообщений и частоту дискретизации Цифровая система передачи непрерывных сообщений;

определить число уровней квантования L и значность двоичного кода n;

рассчитать длительность двоичного символа Цифровая система передачи непрерывных сообщений;

рассчитать отношение сигнал/шум квантования Цифровая система передачи непрерывных сообщений при выбранных параметрах АЦП;

рассчитать допустимую вероятность ошибки символа Цифровая система передачи непрерывных сообщений в канале связи (на входе ЦАП).

В составе цифрового канала предусмотрены устройства для преобразования непрерывного сообщения в цифровую форму – аналогово-цифровой преобразователь на передающей стороне и устройство преобразования цифрового сигнала в непрерывный – ЦАП на приемной стороне. Структурные схемы АЦП и ЦАП приведены на рисунке 1.1,1.2.

Входной ФНЧ в схеме АЦП необходим для ограничения спектра первичного сигнала. Это связано с тем, что у большинства первичных сигналов спектр является медленно убывающей функцией, и величина Цифровая система передачи непрерывных сообщений не есть частота, выше которой спектр равен нулю, а является граничной частотой полосы, которую необходимо передать из условия достижения заданного качества воспроизведения первичного сигнала (Цифровая система передачи непрерывных сообщений определяется требуемой разборчивостью речи, четкостью изображения и т.д.).

На приемной стороне линии связи последовательность импульсов после демодуляции и регенерации в приемнике поступает на цифро-аналоговый преобразователь ЦАП, назначение которого состоит в обратном преобразовании (восстановлении) непрерывного сообщения по принятой последовательности кодовых комбинаций. В состав ЦАП входят декодирующее устройство, предназначенное для преобразования кодовых комбинаций в квантованную последовательность отчетов, и сглаживающий фильтр, восстанавливающий непрерывное сообщение по квантованным значениям.

Преобразование аналог-цифра состоит из трех операций (рис.2.2): сначала непрерывное сообщение подвергается дискретизации по времени через интервалы Δt (рис.2.2, а); полученные отсчеты мгновенных значений b(kΔt) квантуются (рис.2.2,б); наконец, полученная последовательность квантованных значений bкв(kΔt) передаваемого сообщения представляется посредством кодирования в виде последовательности т-ичных кодовых комбинаций (рис.2.2,в). Такое преобразование называется импульсно-кодовой модуляцией.


Цифровая система передачи непрерывных сообщений

Рисунок 2.2 – Преобразование непрерывного сообщения в последовательность двоичных импульсов.


Преобразование непрерывных сообщений в цифровую форму в системах ИКМ, как отмечалось, сопровождается округлением мгновенных значений до ближайших разрешенных уровней квантования. Возникающая при этом погрешность представления является неустранимой, но контролируемой (так как не превышает половины шага квантования) (рис.2.2,г). Погрешность (ошибку) квантования, представляющую собой разность между исходным сообщением и сообщением, восстановленным по квантованным отсчетам, называют шумом квантования.

Интервал дискретизации по времени Цифровая система передачи непрерывных сообщений выбираем на основе теоремы Котельникова: функция времени, спектр которой ограничен сверху некоторым значением частоты Fmax полностью определяется своими отсчетами, сделанными с частотой fкві2Fmax .

Итак, частота дискретизации Цифровая система передачи непрерывных сообщений выбирается из условия

Цифровая система передачи непрерывных сообщений (2.1)

Цифровая система передачи непрерывных сообщенийкГц

Цифровая система передачи непрерывных сообщенийкГц.

Увеличение частоты дискретизации позволяет упростить входной фильтр АЦП, ограничивающий спектр первичного сигнала, и выходной (интерполирующий) ФНЧ ЦАП, восстанавливающий непрерывный сигнал по отчетам. Но увеличение частоты дискретизации приводит к уменьшению длительности двоичных сигналов на выходе АЦП, что требует нежелательного расширения полосы частот канала связи для передачи этих символов. Обычно параметры входного ФНЧ АЦП и выходного ФНЧ ЦАП выбирают одинаковыми.

Для того чтобы ФНЧ не вносили линейных искажений в непрерывный сигнал, граничные частоты полос пропускания ФНЧ должны удовлетворять условию


Цифровая система передачи непрерывных сообщений (2.2)


Для того чтобы исключить наложение спектров Цифровая система передачи непрерывных сообщений и Цифровая система передачи непрерывных сообщений (см. приложение А), а также обеспечить ослабление восстанавливающим ФНЧ составляющих Цифровая система передачи непрерывных сообщений, граничные частоты полос задерживания ФНЧ должны удовлетворять условию


Цифровая система передачи непрерывных сообщений.(2.3)


Чтобы ФНЧ не были слишком сложными, отношение граничных частот выбирают из условия


Цифровая система передачи непрерывных сообщений.(2.4)


После учета этих условий, т.е. формулы (2.2), (2.3), (2.4) выбираем

fД =15 кГц, f1 =6,5 кГц, f2=8,5 кГц.

Интервал дискретизации по времени


Цифровая система передачи непрерывных сообщений (2.5)

Цифровая система передачи непрерывных сообщений.


Цифровая система передачи непрерывных сообщенийСредняя мощность шума квантования :


Цифровая система передачи непрерывных сообщений. (2.6)


Заданное в децибелах отношение сигнал/помеха необходимо представить в разах


Цифровая система передачи непрерывных сообщений, (2.7)

Цифровая система передачи непрерывных сообщений

Цифровая система передачи непрерывных сообщений


Тогда по формуле (2.6)


Цифровая система передачи непрерывных сообщений Вт.


Помехоустойчивость системы передачи непрерывных сообщений определяется величиной


Цифровая система передачи непрерывных сообщений (2.8)


где Цифровая система передачи непрерывных сообщений- средняя мощность первичного сигнала;

Цифровая система передачи непрерывных сообщений- средняя мощность помехи на выходе системы передачи.

Из формулы (2.8)

Цифровая система передачи непрерывных сообщенийВт


В системе цифровой передачи методом ИКМ мощность помехи на выходе ЦАП определяется


Цифровая система передачи непрерывных сообщений, (2.9)


где Цифровая система передачи непрерывных сообщений - средняя мощность шума квантования;

Цифровая система передачи непрерывных сообщений - средняя мощность шумов ложных импульсов.

Из формулы (2.9)


Цифровая система передачи непрерывных сообщений Вт.


Мощность шума квантования выражается через величину шага квантования Цифровая система передачи непрерывных сообщений [1, ф-ла (8.8)]


Цифровая система передачи непрерывных сообщений.(2.10)


Из формулы (2.10) найдем шаг квантования


Цифровая система передачи непрерывных сообщений.


Первичный сигнал Цифровая система передачи непрерывных сообщений, подлежащий преобразованию в цифровой сигнал, принимает значения от Цифровая система передачи непрерывных сообщений до Цифровая система передачи непрерывных сообщений и интервал (Цифровая система передачи непрерывных сообщений,Цифровая система передачи непрерывных сообщений) подлежит квантованию. У сигналов со средним значением равным нулю Цифровая система передачи непрерывных сообщений. Если значение Цифровая система передачи непрерывных сообщений не задано, то оно определяется с помощью соотношения


Цифровая система передачи непрерывных сообщений(2.11)


где Цифровая система передачи непрерывных сообщений - коэффициент амплитуды (в [1] обозначается П и называется пик-фактором). Он характеризует превышение максимальным (амплитудным) значением сигнала его среднеквадратического значения, равного корню из средней мощности сигнала.

Число уровней квантования L найдем по формуле (2.12)


Цифровая система передачи непрерывных сообщений (2.12)

Цифровая система передачи непрерывных сообщений


Значность двоичного кода АЦП


Цифровая система передачи непрерывных сообщений(2.13)


есть целое число. Поэтому число уровней квантования L выбирается как такая целая степень числа 2, при которой


Цифровая система передачи непрерывных сообщений.


Примем L=256 так как 8 – это наиболее близкое значение разрядности из существующих разрядностей ЦАП и АЦП.

Из формулы (2.13)


Цифровая система передачи непрерывных сообщений.


Следовательно Цифровая система передачи непрерывных сообщений.Тогда отношение сигнал/шум квантования [1, ф-ла (8.11)]

Цифровая система передачи непрерывных сообщений (2.14)

Цифровая система передачи непрерывных сообщений


Для определения допустимой вероятности ошибки двоичного символа на входе ЦАП Цифровая система передачи непрерывных сообщений необходимо предварительно определить допустимую величину мощности шума ложных импульсов на основе соотношения (2.9)


Цифровая система передачи непрерывных сообщений(2.15)


Здесь Цифровая система передачи непрерывных сообщений -мощность шума квантования, определяемая соотношениями (2.10) и (2.12) при выбранном числе уровней квантования L.


Цифровая система передачи непрерывных сообщений

Цифровая система передачи непрерывных сообщений.Вт


Тогда из соотношения (2.15)


Цифровая система передачи непрерывных сообщенийВт


Далее воспользуемся соотношением [1, ф-ла (8.14)], связывающим Цифровая система передачи непрерывных сообщений и вероятность ошибки бита на входе ЦАП Цифровая система передачи непрерывных сообщений


Цифровая система передачи непрерывных сообщений. (2.16)


Соотношение (2.16) позволяет рассчитать допустимую вероятность ошибки символа Цифровая система передачи непрерывных сообщений на входе ЦАП:

Цифровая система передачи непрерывных сообщений.


Длительность двоичного символа на выходе АЦП определяется


Цифровая система передачи непрерывных сообщений(2.17)

Цифровая система передачи непрерывных сообщений


3. РАСЧЕТ ИНФОРМАЦИОННЫХ ХАРАКТЕРИСТИК ИСТОЧНИКА СООБЩЕНИЙ И ПЕРВИЧНЫХ СИГНАЛОВ


3.1 Расчет информационных характеристик источника непрерывных сообщений


Сообщение непрерывного источника преобразуется в первичный аналоговый сигнал Цифровая система передачи непрерывных сообщений обычно без потери информации, поэтому расчеты информационных характеристик источника проводятся для первичного сигнала.

Исходные данные для расчета:

плотность вероятности мгновенных значений первичного сигнала Цифровая система передачи непрерывных сообщений ѕДЭР ;

максимальная частота спектра первичного сигнала Цифровая система передачи непрерывных сообщений

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: