Цифровая система передачи непрерывных сообщений
отношение средней мощности первичного сигнала к средней мощности ошибки воспроизведения на выходе системы передачи = 30дБ=1000.
Подлежат расчету:
эпсилон-энтропия источника ;
коэффициент избыточности источника ;
производительность источника .
Эпсилон-энтропия определяет количество существенной информации в одном отсчете непрерывного сообщения и является мерой информативности (непредсказуемости) непрерывного источника. Эпсилон-энтропия Hε(В) определяется как минимальное количество информации, содержащейся в Z(t)=B(t)+E(t) относительно сигнала B(t), при котором Z(t) и B(t) эквивалентны. Эквивалентность принимается как близость в среднеквадратическом смысле: - допустимое значение шума наблюдения.
Итак, по определению
Hε(B)=h(B)-maxh(B|Z), (3.1)
где,ѕ максимум берется по всем условным распределениям p(b), для которых .Так как B(t)=Z(t)-E(t), то условная дифференциальная энтропия h(B|Z) при заданном сигнале Z(t) полностью определяется шумом воспроизведения E(t). Если шум воспроизведения имеет фиксированную дисперсию , то дифференциальная энтропия h(E) максимальна при гауссовском распределении и равна
h(E)=. (3.2)
Дифференциальная энтропия сигнала h(B) зависит от вида распределения вероятностей p(b) и дисперсии сигнала . У сигналов со средним значением равным нулю =Pb. Для равновероятного закона распределения случайных величин дифференциальная энтропия будет равна
(3.3)
подставляя (3.2) и (3.3) в (3.1) получим
==4,878
=4,983
Величина характеризует минимальное отношение сигнал/шум, при котором сигнал B(t) и процесс Z(t) еще эквивалентны.
Величина
(3.4)
называется избыточностью источника с объемом алфавита L. Она показывает, какая доля максимально возможной при этом алфавите энтропии не используется источником.
Производительность источника непрерывных сообщений можно определить как количество информации, которое необходимо передать в единицу времени, чтобы восстановить сообщение при заданном критерии эквивалентности. Если источник выдает независимые отсчеты сообщения (сигнала) дискретно во времени со средней скоростью υ, то его эпсилон-производительность
(3.5)
Эпсилон-производительность называют также скоростью создания информации при заданном критерии верности. Для источника непрерывных сообщений, ограниченных полосой Fс, согласно теореме Котельникова шаг дискретизации Δt=1/υ=1/(2Fc), т. е. необходимое число отсчетов в секунду равно 2/Fс. Если спектр сообщения в полосе Fс равномерен, то эти отсчеты некоррелированы, а для гауссовского источника и независимы. В этом случае
бит/с. (3.6)
3.2 Расчет информационных характеристик сигнала на выходе АЦП
Исходные данные для расчета:
плотность распределения вероятностей мгновенных значений ѕ ДЭР и коэффициент амплитуды =9 первичного сигнала;
число уровней квантования АЦП L=256;
частота дискретизации АЦП =15 кГц.
Подлежат расчету:
энтропия квантованных отсчетов ;
скорость создания информации на выходе АЦП .
Квантованный сигнал является дискретным по уровню и его энтропия вычисляется по формуле
, (3.7)
(полагают, что производимые в АЦП отсчеты независимы). Входящие в эту формулу вероятности квантованных значений сигнала можно определить
, (3.8)
где - квантованное значение сигнала на i-ом уровне квантования;
- плотность вероятности сигнала ;
- шаг квантования, определяемый по формуле (2.11).
Расчеты энтропии квантованного сигнала выполним с помощью ЭВМ.
Для ДЭР
(3.9)
Некоторые источники передают сообщения с фиксированной скоростью, затрачивая в среднем время Т на каждое сообщение. Производительностью (в бит на секунду) такого источника H'(B) называется суммарная энтропия сообщений, переданных за единицу времени:
(3.10)
.
Разницу между полученными значениями и ( < ) можно объяснить тем, что код на выходе АЦП обладает некоторой избыточностью. Эта избыточность связана с применением двоичного кода, из-за которого число уровней квантования сигнала определяется формулой и превышает необходимое а также, тем , что любой кодер должен обладать большей производительностью чем источник сообщения, что бы успевать его обрабатывать.
4. РАСЧЕТ ПОМЕХОУСТОЙЧИВОСТИ ДЕМОДУЛЯТОРА ДИСКРЕТНОЙ МОДУЛЯЦИИ
Требуется рассчитать:
зависимость вероятности ошибки бита от отношения сигнал/шум на входе демодулятора и построить график этой зависимости;
значения требуемых отношений сигнал/шум на входе демодулятора и , обеспечивающих допустимую вероятность ошибки бита .
Помехоустойчивость демодулятора сигнала дискретной модуляции определяют вероятностью ошибки сигнала либо вероятностью ошибки двоичного символа р. Вероятности ошибки и р зависят от вида модуляции, способа приема, отношения энергии сигнала к удельной мощности помехи и характеристик канала связи.
Для двоичных сигналов и р совпадают. Формулы для расчета вероятности ошибки символа при передаче двоичных сигналов по гауссовскому каналу связи с постоянными параметрами приведены в [2, разд. 6.5, 6.6]. Для ОФМ-2 вероятность ошибки двоичного кода будет определяться по формуле:
(4.1)
где
- функция Крампа.
Для заданного вида модуляции и способа приема рассчитаем и построим график зависимости
(4.2)
График данной функции показан на рис 4.1, кривая f1(h).
Если в канале связи не используется помехоустойчивое кодирование, то допустимая вероятность ошибки символа на выходе демодулятора равняется значению , найденному при расчете параметров ЦАП либо декодера простого кода. Определим требуемое отношение сигнал/шум для системы передачи без кодирования , при котором . Получим =10,434 дБ.
Рисунок 4.1.ѕ Вероятность ошибки бита от отношения сигнал/шум на входе демодулятора.
5. ВЫБОР КОРРЕКТИРУЮЩЕГО КОДА И РАСЧЕТ ПОМЕХОУСТОЙЧИВОТИ СИСТЕМЫ СВЯЗИ С КОДИРОВАНИЕМ
Корректирующие коды позволяют повысить помехоустойчивость и тем самым уменьшить требуемое отношение сигнал/шум на входе демодулятора при заданной вероятности ошибки передаваемых символов. При помехоустойчивом кодировании обнаружение и исправление ошибок возможно потому, что большая часть из 2n двоичных комбинаций длины n не используется для передачи сообщений источника (запрещённые комбинации). Появление запрещённой комбинации на приёмном конце однозначно свидетельствует об ошибке в канале.
Кодовые (разрешённые) комбинации должны удовлетворять некоторой системе проверок (задающей код), что позволяет отличать их от запрещённых комбинаций. Результатом вычисления проверок для принятой из канала комбинации является синдром. Если синдром нулевой, то принята кодовая комбинация (ошибок нет). При обнаружении ошибок декодер отбрасывает те принятые комбинации, которые имеют ненулевой синдром. При исправлении ошибок декодер по синдрому определяет положение ошибочных символов в принятой комбинации и инвертирует их.
Величина, показывающая во сколько раз (на сколько дБ) уменьшается требуемое кодирование, называется энергетическим выигрышем кодирования (ЭВК).
Каналы связи с помехоустойчивым кодированием и без него удобно сравнивать, если в качестве отношения сигнал/шум использовать отношение энергии сигнала, затрачиваемой на передачу одного информационного символа , к удельной мощности шума :
(5.1)
Так, если в канале связи без кодирования требуемое отношение сигнал/шум для обеспечения заданной вероятности ошибки обозначим , а в канале связи с кодированием - , то ЭВК будет определяться
или
.(5.2)
Исходные данные для расчета:
требуемый ЭВК ѕ D=2,2 дБ;
вид модуляции в канале связи и способ приема ѕ ОФМ-2, когерентный;
тип непрерывного канала связи ѕ канал с постоянными параметрами и аддитивным Гауссовым шумом;
допустимая вероятность ошибки двоичного символа на выходе декодера ;
отношение сигнал/шум на входе демодулятора дБ , обеспечивающее допустимую вероятность ошибки в канале кодирования;
длительность двоичного символа на входе кодера корректирующего кода мкс.
Требуется:
выбрать и обосновать параметры кода: значность п, число информационных символов кодовой комбинации k и кратность исправляемых ошибок ;
рассчитать зависимость вероятности ошибки символа на выходе декодера от отношения сигнал/шум на входе демодулятора при использовании выбранного кода;
определить полученный ЭВК;
вычислить требуемое отношение на входе демодулятора.
Прежде всего рассмотрим методику расчета помехоустойчивости канала связи с корректирующим кодом. Предположим, что параметры кода п, k и и отношение сигнал/шум заданы. При декодировании с исправлением ошибок вероятность ошибочного декодирования определяется из условия, что число ошибок в кодовой комбинации на входе декодера q превышает кратность исправляемых ошибок [2, ф-ла (5.15)]:
,(5.3)
где
-(5.4)
вероятность ошибки кратности q
-(5.5)
число сочетаний из п по q;
р - вероятность ошибки двоичного символа на входе декодера, расчет которой для гауссовского канала связи с постоянными параметрами рассмотрен в разд. 4. В используемые там формулы необходимо подставлять
.(5.6)
Соотношение (5.6) учитывает уменьшение длительности символов, передаваемых по непрерывному каналу связи, из-за введения в кодовые комбинации дополнительных символов при кодировании, и соответствующее уменьшение энергии сигнала на входе демодулятора.
Для перехода от вероятности ошибочного декодирования к вероятности ошибки двоичного символа достаточно учесть принцип исправления ошибок декодером: декодер запрещенную кодовую комбинацию заменяет ближайшей разрешенной. Поэтому, если число ошибок в комбинации q= ,но , то в результате декодирования комбинация будет содержать ошибок ( - кодовое расстояние кода). Поскольку ошибки более высокой вероятности маловероятны, то окончательно можно считать, что в ошибочно декодированной комбинации имеется ошибочных символов. У корректирующих кодов кодовое расстояние . С учетом этого переход от к можно выполнить по формуле
(5.7)
Приведенные соотношения позволяют выполнить расчет помехоустойчивости в канале связи с корректирующим кодом при заданных параметрах кода п, k и , отношении сигнал/шум в непрерывном канале связи , виде модуляции, способе приема и длительности символа в следующем порядке:
Расчет отношения сигнал/шум на входе демодулятора по формуле (5.6);
Расчет вероятности ошибки символа на выходе демодулятора р по методике, изложенной в разд. 4;
Расчет вероятности ошибочного декодирования кодовой комбинации по формулам (5.3)…(5.5);
Расчет вероятности ошибки символа на выходе декодера по формуле (5.7).
Согласно заданию на курсовую работу требуется выбрать и обосновать параметры кода, обеспечивающего требуемый ЭВК. Перейдем к решению этой задачи.
Чем больше кратность исправляемых ошибок , тем более высокая помехоустойчивость может быть достигнута за счет применения кодирования. Но при увеличении растет сложность кодера и особенно декодера. Рассмотрим применение кодов со значением =1 и, соответственно, с =4.
Для любого натурального числа r=n-k существует код Хемминга с =4 при [2, с. 149]. К кодам Хемминга любой длины п с наименьшим числом r, удовлетворяющим условию
(5.8)
Используя соотношение (5.8) можно указать пару чисел n и k, при которых существует код Хемминга. Так как k=8 ѕ число информационных символов на выходе АЦП, то n=12.
При увеличении n имеет место следующее: уменьшается скорость кода или расширяется полоса частот, занимаемая канальным сигналом, увеличивается отношение сигнал/шум (ф-ла (5.6)) на входе демодулятора при фиксированном значении , уменьшается вероятность ошибки символа на входе декодера р. При малых значениях р и не слишком больших значениях п величина убывает быстрее, нежели растет число , и величины и уменьшаются. Следовательно, при увеличении п увеличивается ЭВК. При больших значениях п уменьшение замедляется и при достаточно больших значениях п начинается рост и уменьшение ЭВК.
После набора кода рассчитаем зависимость, характеризующую помехоустойчивость канала связи с кодированием. Используя формулы (5.3)…(5.7) и методику построения зависимости вероятности ошибки бита от отношения сигнал/шум на входе демодулятора (разд. 4) получим
(5.9)
Изменяя величину в широких пределах, получим зависимость (рис.4.1), характеризующую помехоустойчивость канала связи с выбранным кодом. По этой зависимости определим требуемое отношение сигнал/шум на входе демодулятора, при