Xreferat.com » Рефераты по коммуникации и связи » Анализ и оценка типовых топологий вычислительных сетей

Анализ и оценка типовых топологий вычислительных сетей

СовременнАЯ гуманитарнАЯ АКАДЕМИЯ


Направление подготовки / специальность ДОПУСК К ЗАЩИТЕ:

ИНФОРМАТИКА И ВТ Приказ СГА № _______

от «____»______200__г.


Выпускная квалификационная работа


Тема:

Анализ и оценка типовых топологий вычислительных сетей

_____________________________________________________________

_____________________________________________________________


Руководитель: _______________________ / ______________ /

Ф. И. О. подпись


Дата представления работы «____» ______________ 200__г.


Мурманск 2008 г.

СОДЕРЖАНИЕ


Введение

1 Физические топологии сетей

1.1. Базовые топологии сетей

1.2.Прочие топологии сетей (цепочечная, полносвязная, ячеистая, комбинированная)

2 Логические топологии сетей

2.1 Логическая шина

2.2 Логическое кольцо

2.3 Логическая звезда (коммутация)

3Особенности практической применимости сетей Ethernet различных классов

3.1 Класс 10BaseY

3.2 Класс 100BaseY

3.3 Класс 1000BaseT (GigabitEthernet)

Заключение

Глоссарий

Библиографический список

Приложения

ВВЕДЕНИЕ


1) В современном обществе существует одна из потребностей- это связь между людьми, странами, континентом. Она должна быть быстрой, надежной и удобной.

Связь между компьютерами обеспечивают сети

2)В данной работе будут рассмотрены основные типовые топологии вычислительных сетей.

Актуальность данной работы обусловлена тем, что в связи с распространением персональных компьютеров и созданием на их основе автоматизированных рабочих мест (АРМ) возросло значение локальных вычислительных сетей (ЛВС), являющиеся объектом моего исследования. Предметом исследования являются основные топологии вычислительных сетей. Целью исследования является анализ и оценка основных топологий сетей, а в задачи исследования входит 1)изучение топологий сетей, 2)вывод о работе сетей с различной топологией, 3)выявление достоинств сетей и недостатков, возможность разбираться в преимуществах и недостатках топологий, влияющих на производительность сети.

Методы: 1)анализ литературы;2)интерпретация данных;3)отбор необходимого материала;4)качественное и количественное описание топологии вычислительных сетей

Правильно организованная и умело эксплуатируемая сеть обеспечивает целый ряд преимуществ по сравнению с отдельным компьютером:

1. Распределение данных (Data Sharing). Данные в сети хранятся на центральном РС и могут быть доступны для любого РС, подключенного к сети, поэтому не надо на каждом рабочем месте хранить одну и ту же информацию.

2. Распределение ресурсов (Resource Sharing). Периферийные устройства могут быть доступны для всех пользователей сети, например: принтер, факс-модем, сканер, диски, выход в глобальную сеть.

4. Распределение программ (Software Sharing). Все пользователи сети могут иметь доступ к программам, которые были один раз централизованно установлены.

5. Электронная почта (Electronic Mail). Все пользователи сети могут передавать и принимать сообщения.

6. Обеспечение широкого диапазона решаемых задач, предъявляющих повышенные требования к производительности и объему памяти1.

Локальные сети имеют некоторые особенности. Главная из них — это связь. Она должна быть быстрой, надежной и удобной. Обычно, локальные сети не выходят за пределы нескольких комнат или одного здания, поэтому длина линии связи обычно не превышает нескольких сотен метров. Они связывают между собой ограниченное количество компьютеров. Все это позволяет обеспечить качественную связь. Поэтому скорость передачи данных обычно составляет от 10 Мбит/с и выше. К тому же, требуется надежная связь, иначе при исправлении ошибок теряется выигрыш в скорости. Также необходимо небольшое время ожидания установления связи, так как оно включено в общее время передачи информации. При таких высоких требованиях в локальных сетях используются специальные технические средства.

При построении сетей ЭВМ, в т.ч. локальных, говорят об их топологии.

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Понятие топологии относится прежде всего к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по своему собственному пути.
Топология определяет требования к оборудованию, тип используемого кабеля, возможные и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети.

Сетевая топология может быть:

  • физической — описывает реальное расположение и связи между узлами сети.

  • логической — описывает хождение сигнала в рамках физической топологии.

1 ФИЗИЧЕСКИЕ ТОПОЛОГИИ СЕТЕЙ


Физическая топология описывает реально использующиеся способы организации физических соединений различного сетевого оборудования (использующиеся кабели, разъемы и способы подключения сетевого оборудования). Физические топологии различаются по стоимости и функциональности.

Для сетей с селекцией данных характерны широковещательные топологии. Их основные разновидности – шина, дерево, звезда с пассивным центром.

Для сетей с маршрутизацией данных характерны последовательные («точка-точка») топологии: звезда с интеллектуальным центром, кольцо, цепочка, полносвязная, произвольная1.

Базовые топологии сетей: шина, звезда и кольцо подробнее будут рассмотрены ниже.


1.1 Базовые топологии сетей


Для организации сети минимально необходимо одна линия передачи данных и по одному сетевому интерфейсу для каждого участника сети. Такая топология называется шинной (другое название - моноканал). К единственной незамкнутой линии передачи данных в произвольных точках подключаются все участники

Шина позволяет легко добавлять новых участников к сети, для прокладки линии требуется минимальное количество кабеля. Основной недостаток – любой разрыв линии делает сеть неработоспособной. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

В топологии шина отсутствует явно выраженный центральный абонент, через который передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система).

Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента. В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях. Тем не менее из-за широкого распространения сетей с топологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.

Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.

В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Подробнее о согласовании будет изложено в специальном разделе книги. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи. Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине Lпр, то полная длина шины не может превышать величины Lпр1. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями.

Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов — репитеров или повторителей. Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи.

Если несколько шин – сегментов соединить с помощью концентраторов или повторителей, то разрыв в одном сегменте делает неработоспособным только этот сегмент, а все остальные сегменты продолжают функционировать. Такая топология носит название «Дерево»

В звездообразной топологии принято различать два типа топологий:

1. звезда с пассивным центром;

2. звезда с интеллектуальным центром.

Звездообразная топология требует наличия специального многопортового устройства – концентратора.

Концентратор соединяется с каждым участником сети отдельной линей передачи данных. При выходе из строя одной из линий доступ к сети теряет только один участник. Однако, если откажет концентратор, работа сети станет полностью невозможной.

Среди концентраторов выделяются активные (active) и пассивные (passive). Активные концентраторы регенерируют и передают сигналы так же, как это делают репитеры. Иногда их называют многопортовыми репитерами - они имеют от 8 до 12 портов для подключения компьютеров.

Некоторые типы концентраторов являются пассивные, например монтажные панели или коммутирующие блоки. Они просто пропускают через себя сигнал как узлы коммутации, не усиливая и не восстанавливая его2. Пассивные концентраторы не надо подключать к источнику питания.

Гибридными (hybrid) называются концентраторы, к которым можно подключать кабели различных типов. Сети, построенные на концентраторах, легко расширить, если подключить дополнительные концентраторы (см. Приложение 1).

Активное оборудование обладает информацией о структуре сети и может выбирать путь передачи данных, передавая данные только одному участнику, для которого они предназначены и не загружая остальные линии.

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию, то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

При кольцеобразной топологии каждый участник соединен отдельной линией передачи данных с двумя соседями. Данные по каждой линии передаются обычно только в одном направлении. Блоки данных ретранслируются каждым участником до тех пор, пока не попадут к получателю. Как правило, после этого блок продолжают передавать по кольцу дальше. Отправитель, получив свой блок, прошедший полный круг, изымает его из кольца и удаляет. Основной недостаток кольцевой топологии – при обрыве хотя бы одной линии, или выходе из строя хотя бы одного участника, сеть перестает функционировать.

Если предельная длина кабеля, ограниченная затуханием, составляет Lпр, то суммарная длина кольца может достигать NLпр, где N — количество компьютеров в кольце. Полный размер сети в пределе будет NLпр/2, так как кольцо придется сложить вдвое1. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI). Кольцо в этом отношении существенно превосходит любые другие топологии.

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие — позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.

Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи, передающих информацию в противоположных направлениях. Цель подобного решения — увеличение (в идеале — вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).


1.2 Прочие топологии (цепочечная, полносвязная, ичеистая, комбинированная)


На практике нередко используют и другие топологии локальных сетей, например цепочечная, полносвязная, ячеистая, комбинированная.

Цепочечная топология получается из кольца при удалении одной из линий. В отличие от кольца, линии должны передавать данные в обоих направлениях.

Полносвязная топология - предельный максимальный случай, полносвязная сеть «каждый с каждым», при n участниках требует наличия n*(n-1)/2 линий передачи данных и n*(n-1) сетевых интерфесов.

Выход из строя любой одной линии передачи данных (возможно, даже нескольких линий) не влияет на работу сети – можно найти другой маршрут для передачи данных. Недостаток – наибольшее среди всех топологий количество оборудования и кабелей.

Произвольная топология - топология, получаемая из полносвязной удалением одной или нескольких линий. Единственное ограничение – полученная сеть должна быть связанной. Такая топология позволяет обеспечить высокую надежность связи (за счет нескольких возможных путей передачи данных) там, где это нужно, не расходуя лишние средства на оборудование и кабель там, где этого не требуется.

Довольно часто применяются и комбинированные топологии, среди которых наибольшее распространение получили звездно-шинная (.

В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды. В этом случае к концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты, то есть на самом деле реализуется физическая топология «шина», включающая все компьютеры сети1. В данной топологии может использоваться и несколько концентраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. Таким образом, пользователь получает возможность гибко комбинировать преимущества шинной и звездной топологий, а также легко изменять количество компьютеров, подключенных к сети.

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы (изображенные на рис. 1.9 в виде прямоугольников), к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи. В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов все линии связи образуют замкнутый контур (как показано на рис. 1.9). Данная топология позволяет комбинировать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети. Пример смешанной топологии (см. Приложение 2).

Итак, рассмотрев основные физические топологии сети, можно сделать вывод о существовании некоторых важнейших факторов, влияющих на работоспособность сети и непосредственно связанные с понятием топология. Это:

- Исправность компьютеров (абонентов), подключенных к сети. В некоторых случаях поломка абонента может заблокировать работу всей сети. Иногда неисправность абонента не влияет на работу сети в целом, не мешает остальным абонентам обмениваться информацией.

- Исправность сетевого оборудования, то есть технических средств, непосредственно подключенных к сети (адаптеры, трансиверы, разъемы и т.д.). Выход из строя сетевого оборудования одного из абонентов может сказаться на всей сети, но может нарушить обмен только с одним абонентом.

- Целостность кабеля сети. При обрыве кабеля сети (например, из-за механических воздействий) может нарушиться обмен информацией во всей сети или в одной из ее частей. Для электрических кабелей столь же критично короткое замыкание в кабеле.

- Ограничение длины кабеля, связанное с затуханием распространяющегося по нему сигнала1.

Большинство сетей ориентированы на три базовые топологии: шина, звезда, кольцо. Но, сравнивая основные характеристики этих топологий, можно отдать предпочтение топологии типа «звезда» (см. Таблицу 1.1, Таблицу 1.2).


Таблица 1.1

Характеристики топологий вычислительных сетей

Характери­стики Топология

Звезда Кольцо Шина
Стоимость расширения Незначительная Средняя Средняя
Присоединение абонентов Пассивное Активное Пассивное
Защита от от­казов Незначительная Незначительная Высокая
Размеры сис­темы Любые Любые Ограниченны
Защищенность от прослуши­вания Хорошая Хорошая Незначительная
Стоимость подключения Незначительная Незначительная Высокая
Поведение системы при высоких на­грузках Хорошее Удовлетворитель­ное Плохое
Возможность работы в ре­альном режиме времени Очень хорошая Хорошая Плохая
Разводка ка­беля Хорошая Удовлетворитель­ная Хорошая
Обслуживание Очень хорошее Среднее Среднее

Таблица 1.2

Преимущества и недостатки основных топологий компьютерных сетей

Топология Преимущества Недостатки
Шина

Небольшое время установки сети;

Дешевизна (требуется меньше кабеля и сетевых устройств);

Простота настройки;

Выход из строя рабочей станции не отражается на работе сети;

Любые неполадки в сети, как обрыв кабеля, выход из строя терминатора полностью уничтожают работу всей сети;

Сложная локализация неисправностей;

С добавлением новых рабочих станций падает производительность сети

Кольцо

Простота установки;

Практически полное отсутствие дополнительного оборудования;

Возможность работы на высоких скоростях, поскольку данные передаются только в одном направлении.

Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;

Сложность конфигурирования и настройки;

Сложность поиска неисправностей;

Звезда

Выход из строя одной рабочей станции не отражается на работе всей сети в целом;

Хорошая масштабируемость сети;

Лёгкий поиск неисправностей и обрывов в сети;

Высокая производительность сети

Гибкие возможности администрирования

Выход из строя центрального концентратора обернётся неработоспособностью сети в целом;

Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;

Конечное число рабочих станций , т.е. число рабочих станций ограничено количеством портов в центральном концентраторе;


Выбор топологии сети - занятие очень специфическое. Окончательное решение принимается после детального рассмотрения требований к производительности, надежности и условиям работы сети. Шинная топология представляет собой быстрейший и про­стейший способ установки маленькой или временной сети. К недостаткам такой топологии следует отнести уязвимость при неполадках в магистральном кабеле и трудность изоляции от­дельных станций или других компонентов при неправильной ра­боте. Но, ориентируясь на вышеизложенный материал, можно отдать предпочтение топологии типа «звезда», которая на сегодняшний день является наиболее распространенной и популярной, так как она оптимально сочетает в себе самые такие качества как производительность, невысокая цена (на «витой паре»), надежность, простота установки.

Преимущества топологии «звезда» по сравнению с «общей шиной» заключаются в более высокой надежности и отказоустойчивости локальной сети, в ней значительно реже возникают «заторы», да и конечное оборудование работает по «витой паре» на порядок быстрее. При этом в случае выхода из строя одного из узлов сети вся остальная система продолжает работать стабильно: полный отказ такой локальной сети происходит только при поломке концентратора. Безусловно, организация сетевой системы на основе топологии «звезда» требует значительно больших финансовых затрат, но они целиком и полностью оправдываются, когда речь заходит о необходимости обеспечить надежную связь между работающими в сети компьютерами.

2 ЛОГИЧЕСКИЕ ТОПОЛОГИИ СЕТЕЙ


Логическая топология определяет реальные пути движения сигналов при передаче данных по используемой физической топологии. Таким образом, логическая топология описывает пути передачи потоков данных между сетевыми устройствами. Она определяет правила передачи данных в существующей среде передачи с гарантированием отсутствия помех влияющих на корректность передачи данных.

Поскольку логическая топология описывает путь и направление передачи данных, то она тесно связана с уровнем MAC (Media Access Control) модели OSI (подуровень канального уровня). Для каждой из существующих логических топологий существуют методы контроля доступа к среде передачи данных (MAC) позволяющие осуществлять мониторинг и контроль процесса передачи данных1. Эти методы будут обсуждаться вместе с соответствующей им топологией.

Логическая топология – это схема соединения, связанная с методом доступа к передающей среде.

В настоящее время существует три базовые логические топологии: «логическая шина», «логическое кольцо» и «логическая звезда» (коммутация). Каждая из этих топологий обеспечивает преимущества в зависимости от способов использования. Используя рассмотренные ранее рисунки, посвященные физическим топологиям, всегда нужно помнить, что логическая топология определяет направление и способ передачи, а не схему соединения физических проводников и устройств.

В таблице 2.2 представлены сводные данные по основным видам локальных сетей (см. Приложение 3).

2.1 Логическая шина


В топологии «логическая шина» последовательности данных, называемые «кадрами» (frames), в виде сигналов распространяются одновременно во всех направлениях по существующей среде передачи. Каждая станция в сети проверяет каждый кадр данных для определения того, кому адресованы эти данные. Когда сигнал достигает конца среды передачи, он автоматически гасится (удаляется из среды передачи) соответствующими устройствами, называемыми «терминаторами» (terminators). Такое уничтожение сигнала на концах среды передачи данных предотвращает отражение сигнала и его обратное поступление в среду передачи. Если бы терминаторов не существовало, то отраженный сигнал накладывался бы на полезный и искажал его.

В топологии «логическая шина» среда передачи совместно и одновременно используется всеми устройствами передачи данных. Для предотвращения помех при попытках одновременной передачи данных несколькими станциями, только одна станция в любой момент времени имеет право передавать данные. Таким образом, должен существовать метод определения того, какая станция имеет право передавать данные в каждый конкретный момент времени.

Наиболее часто используемым при организации топологии логической шины методом контроля доступа к среде передачи является CSMA/CD – «метод прослушивания несущей, с организацией множественного доступа и обнаружением коллизий» (Carrier Sense Multiple Access/ Collision Detection). Этот метод доступа очень похож на разговор нескольких людей в одной комнате. Для того, чтобы не мешать друг другу, в любой момент времени говорит только один человек, а все остальные слушают. А начинать говорить кто-либо может только, убедившись в том, что в комнате воцарилось молчание. Точно таким же образом работает и сеть. Когда какая-либо станция собирается передавать данные, сначала она «прослушивает» (carrier sense) среду передачи данных в целях обнаружения какой-либо уже передающей данные станции. Если какая-либо станция в данный момент выполняет передачу, то станция ждет окончания процесса передачи. Когда среда передачи освобождается, ожидавшая станция начинает передачу своих данных. Если в этот момент начинается передача еще одной или несколькими станциями тоже ожидавшими освобождения среды передачи, то возникает "коллизия" (collision). Все передающие станции обнаруживают коллизию и посылают специальный сигнал информирующий все станции сети о возникновении коллизии. После этого все станции замолкают на случайный промежуток времени перед повторной попыткой передачи данных. После этого алгоритм работы начинается сначала.

Сеть, базирующаяся на топологии логической шины, может также использовать и технологию «передачи маркера» (token passing) для контроля доступа к среде передачи данных. При использовании этого метода контроля каждой станции назначается порядковый номер, указывающий очередность в передаче данных. После передачи данных станцией с максимальным номером, очередь возвращается к первой станции. Порядковые номера, назначаемые станциям, могут не соответствовать реальной последовательности физического подключения станций к среде передачи данных. Для контроля того, какая станция в текущий момент времени имеет право передать данные, используется контрольный кадр данных, называемый «маркером доступа». Этот маркер передается от станции к станции в последовательности, соответствующей их порядковым номерам. Станция, получившая маркер, имеет право передать свои данные. Однако, каждая передающая станция ограничена временем, в течение которого ей разрешается передавать данные. По окончании этого времени станция обязана передать маркер следующей станции.

Работа такой сети начинается с того, что первая станция, имеющая маркер доступа, передает свои данные и получает на них ответы в течение ограниченного промежутка времени (time slot). Если станция завершает обмен данными ранее окончания выделенного ей времени, она просто передает маркер станции со следующим порядковым номером. Далее процесс повторяется. Такой последовательный процесс передачи маркера продолжается непрерывно, предоставляя возможность каждой станции через строго определенный промежуток времени получить возможность передать данные.

Топология «логической шины» базируется на использовании физических топологий «шина» и «звезда». Метод контроля доступа и типы физических топологий выбираются в зависимости от требований к проектируемой сети. Например, каждая из сетей: Ethernet, 10Base-T Ethernet и ARCnet® используют топологию «логическая шина». Кабели в сетях Ethernet (тонкий коаксиальный кабель) подключаются с использованием физической топологии «шина», а сети 10Base-T Ethernet и ARCnet базируются на топологии «звезда». Вместе с тем, сети Ethernet (шина) и 10Base-T Ethernet (звезда) используют CSMA/CD в качестве метода контроля доступа к среде передачи данных, а в ARCnet (звезда) применяется маркер доступа.


2.2 Логическое кольцо


В топологии «логическое кольцо» кадры данных передаются по физическому кольцу до тех пор, пока не пройдут через всю среду передачи данных. Топология «логическое кольцо» базируется на физической топологии «кольцо». Каждая станция, подключенная к физическому кольцу, получает данные от предыдущей станции и повторяет этот же сигнал для следующей станции. Таким образом, данные, повторяясь, следуют от одной станции к другой до тех пор, пока не достигнут станции, которой они были адресованы. Получающая станция, копирует данные из среды передачи и добавляет к кадру атрибут, указывающий на успешное получение данных. Далее кадр с установленным «атрибутом доставки» продолжает путешествие по кольцу до тех пор, пока не достигнет станции, изначально отправившей эти данные. Станция, проанализировав «атрибут доставки» и убедившись в успешности передачи данных, удаляет свой кадр из сети1.

Метод контроля доступа к среде передачи в таких сетях всегда базируется на технологии «маркеров доступа». Однако последовательность получения права на передачу данных (путь следования маркера), не всегда может соответствовать реальной последовательности подключения станций к физическому кольцу.

Классификация кольцевых систем основывается на примене­нии разных методов множественного доступа. Наиболее известны петли с жезловым (маркерным) управлением, которое реализовано в сети Token Ring фирмы IBM и волоконно-оптической сети FDDI (Fiber Distributed Data Interface), имеющей пропускную способность 100 Мбит/с и использующей топологию двойного (избыточного) кольца. IBM's Token-Ring является примером сети, использующей топологию «логического кольца», базирующегося на физической топологии «кольцо». Token Ring (маркерное кольцо) - архитектура сетей с кольцевой логической топологией и детерминированным методом доступа с передачей маркера. Стандарт определен документом IEEE802.5, но IBM - основной проводник этой архитектуры - использует несколько отличающуюся спецификацию.

Логическое кольцо реализуется на физической звезде, в центре которой находится MAU (Multistation Access Unit) - хаб с портами подключения каждого узла. Для присоединения кабелей используются специальные разъемы, обеспечивающие замыкание кольца при отключении узла от сети. При необходимости сеть может расширяться за счет применения дополнительных хабов, связанных в общее кольцо. Требование безразрывности кольца усложняет кабельное хозяйство Token Ring, использующее четырехпроводные экранированные и неэкранированные витые пары и специальные коммутационные средства.

Основное преимущество Token Ring - заведомо ограниченное время ожидания обслуживания узла (в отличии от Ethernet не возрастающее при усилении трафика), обусловленное детерминированным методом доступа и возможностью управления приоритетом. Это свойство позволяет использовать Token Ring в системах реального времени. Кроме того, сети Token Ring легко соединяются с сетями на больших машинах (IBM Mainframe).

Недостатками Token Ring являются высокая стоимость оборудования и сложность построения больших сетей (WAN).

Топология FDDI является протоколом с передачей маркера, подобным Token Ring. Он использует либо топологию "двойное кольцо", либо топологию «Звезда». В отличие от Token Ring, в котором сетевое кольцо является логическим, а не физическим, изначальная спецификация FDDI предназначалась для систем, действительно замкнутых кабелем в кольцо. Однако в рассматриваемом случае — это уже двойное кольцо. Двойное кольцо (double ring), также называемое магистральным кольцом (trunk ring), состоит из двух отдельных колец, — основного или первичного (primary) и дополнительного (вторичного, secondary), по которым трафик движется в противоположных направлениях, обеспечивая отказоустойчивость. Длина двойного кольца может достигать 100 км, и рабочие станций могут быть расположены на расстоянии до 2 км.

Рабочие станции, присоединенные к обоим кольцам, называются станциями с двойным подключением (DASs, dual attachment stations). В случае обрыва кабеля или неисправности узла трафик перенаправляется в дополнительное кольцо и распространяется в противоположном направлении, сохраняя возможность доступа к данным любой другой системы сети. Кольцо FDDI, работающее в описанном режиме, называется свернутым кольцом (wrapped ring).

В случае свернутого кольца, если возникнет повреждение во втором кабеле, сеть распадется на два изолированных кольца, и взаимодействия в ней будут прерваны. Вдобавок, свернутое кольцо менее эффективно, чем полнофункциональное кольцо, поскольку трафик вынужден пройти дополнительное расстояние для достижения места назначения, поэтому рассмотренный резервный режим — только временная мера до тех пор, пока неисправность не будет устранена.

Архитектура FDDI обеспечивает совместимость с Token Ring, поскольку у них одинаковые форматы кадров. Однако есть и различия. В сети FDDI компьютер:

  • захватывает маркер на определенный интервал времени;

  • за этот интервал передает столько кадров, сколько успеет;

  • завершает передачу

    Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
    Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

    Поможем написать работу на аналогичную тему

    Получить выполненную работу или консультацию специалиста по вашему учебному проекту
    Нужна помощь в написании работы?
    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: