Xreferat.com » Рефераты по коммуникации и связи » Расчет трансформатора

Расчет трансформатора

Размещено на /

Содержание


Задание

Введение

1. Методика расчета трансформатора

1.1 Выбор магнитопровода

1.2 Определение числа витков в обмотках

1.3 Определение потерь в стали и намагничивающего тока

1.4 Электрический и конструктивный расчет обмоток

1.5 Определение падения напряжения и КПД трансформатора

Список литературы

Чертеж рассчитанного трансформатора


ЗАДАНИЕ


1. Рассчитать маломощный трансформатор с воздушным охлаждением

2. Выполнить чертеж рассчитанного трансформатора на 1-2 листах 584Расчет трансформатора841 (формат бумаги А1).

Исходные данные:

S2=200 ВА

S3=50 ВА

U2=315 В

U3=16 В

cosφ2=0,7

cosφ3=0,9

U1=380 В

f=400 Гц

Расчетное условие – минимум стоимости

Температура окружающей среды Ө = 50°С

Расчетное ограничение: максимальная температура

95°С ≤ Өмакс ≤ 105°С


ВВЕДЕНИЕ


Основными элементами конструкций трансформаторов являются магнитопровод и катушки с обмотками.

В зависимости от технологии изготовления магнитопроводы трансформаторов небольшой мощности делятся на пластинчатые (при толщине листа не менее 0,15 мм) и ленточные.

По конструктивному выполнению пластинчатые и ленточные магнитопроводы делятся на три основных типа: стержневые, броневые и кольцевые.

Стержневые пластинчатые магнитопроводы обычно собираются из прямоугольных пластин одинаковой ширины, одинаковых П–образных пластин или из П–образных пластин и прямоугольных перекрышек.

Броневые пластинчатые магнитопроводы собираются из Ш–образных пластин и прямоугольных перекрышек или из одинаковых Ш–образных пластин с разъемом по середине стержня, а так же из сплошных пластин с просечкой среднего стержня.

Для уменьшения магнитного сопротивления в местах стыка отдельных пластин их собирают впереплет, то есть в одном слое перекрышка находится внизу, а в соседних вверху.

Кольцевые пластинчатые магнитопроводы собираются из отдельных пластинчатых колец. Стержневые и броневые ленточные магнитопроводы собираются встык из отдельных сердечников подковообразной формы с поперечным или продольным разрезом.

Для получения возможно меньшего магнитного сопротивления в местах стыка разрезных ленточных сердечников их торцевые поверхности подвергаются шлифовке.

Кольцевые ленточные магнитопроводы изготавливаются путем навивки ленты требуемой ширины на оправу данного диаметра; они обладают минимальным магнитным сопротивлением, но усложняют изготовление (намотку обмотки) трансформатора.

Для уменьшения магнитного сопротивления разрезных ленточных магнитопроводов обе его части при сборке трансформатора склеиваются при помощи специальной ферромагнитной пасты, содержащей карбонильное железо. Иногда склеивают и собираемые встык пластинчатые магнитопроводы. Особенно эффективно использование пасты для магнитопроводов малых размеров, у которых сопротивление воздушного зазора представляет значительную часть их общего сопротивления. Однако для уменьшения тока холостого хода необходимо чтобы состав пасты был однородным, а склеивающий слой был возможно тоньше.

Катушки трансформаторов представляют собой совокупность обмоток и системы изоляции обеспечивающие нормальную работу в заданных условиях окружающей среды. Обмотки изготавливаются из изолированных проводов; кроме того предусматривается изоляция катушек от магнитопровода, междуслоевая изоляция, междуобмоточная изоляция, внешняя (наружная) изоляция катушек.

Изоляция обмотки от стержневых и броневых магнитопроводов осуществляется при помощи каркасов, изготовляемых из негигроскопичного материала, обладающего требуемой электрической и механической прочностью. Простейший и наиболее распространенный тип каркаса представляет собой гильзу, изготовляемую из электротехнического картона (электрокартона). Часто применяются склеенные из электрокартона каркасы. При массовом производстве трансформаторов используются сборные каркасы, изготовляемые из твердых изоляционных материалов (гетинакса или текстолита) или прессованные из пластмассы каркасы.

Кроме магнитопровода и обмоток в конструкцию трансформатора малой мощности входят детали для сборки отдельных частей сердечника, крепления собранного трансформатора, клеммы для присоединения концов обмоток, охлаждения магнитопровода и катушек, защиты от механических повреждений и влагозащиты.

МЕТОДИКА РАСЧЕТА ТРАНСФОРМАТОРА


1.1 Выбор магнитопровода


1.1.1 Определяем расчетную мощность трансформатора. Так как (S2+S3)>100 ВА, расчетную мощность определяем по формуле:


Sр=S2+S3,(1)

Sр=200+50=250 ВА


Величину КПД при расчетной мощности трансформатора Sр=250 ВА, и частоте f=400Гц, выбираем 0,94Расчет трансформатора0,96

1.1.2 Выбираем конструкцию магнитопровода по величине расчетной мощности, частоте и максимальному напряжению. Для данной расчетной мощности выбираем стержневой трансформатор с двумя катушками и ленточными разъемными сердечниками, поскольку он имеет большую поверхность охлаждения по сравнению с броневыми и меньшую среднюю длину витка.

Рассчитав значение RQр=0,78Расчет трансформатора1,17; п.1.6, выбираем стержневой ленточный магнитопровод серии ПЛМ.

1.1.3 Выбираем материал сердечника

При расчетном условии на минимум стоимости, и при данных частоте и мощности выбираем ленточную сталь марки Э340, толщиной 0,15 мм.

1.1.4 По найденной величине Sр для данной конструкции магнитопровода находим ориентировочные значения:

максимальной магнитной индукции - Вмакс=1Т;

плотности тока - jср=3,3 А/мм І;

коэффициента заполнения окна - Rок=0,22;

коэффициента заполнения магнитопровода - Rст=0,9;

1.1.5 Определяем произведение сечения сердечника на площадь окна

(QстQок)=SрРасчет трансформатора10І/2,22fВвыбрjсрRокRст;(2)

(QстQок)=250Расчет трансформатора10І/2,22Расчет трансформатора400Расчет трансформатора1Расчет трансформатора3,3Расчет трансформатора0,22Расчет трансформатора0,9=43,1 см4


гдеSр – расчетная мощность трансформатора, ВА;

f - частота Гц;

Ввыбр – магнитная индукция Т;

Jср – плотность тока А/мм;

Rок – коэффициент заполнения окна медью;

Rст – коэффициент заполнения магнитопровода;

1.6 Определяем отношение сечения сердечника к площади окна


RQр=Qст/Qок=2,22RокС12α ,(3)


где α=4Расчет трансформатора6 ; - отношение массы стали к массе меди;

С1=0,6–для стержневых двухкатушечных трансформаторов;

Найдем пределы изменения величины RQр=RQр minРасчет трансформатораRQр max


RQрmin=2,22Расчет трансформатора0,22Расчет трансформатора0,62Расчет трансформатора4/0,9=0,78

RQрmax=2,22Расчет трансформатора0,22Расчет трансформатора0,62Расчет трансформатора6/0,9=1,17

RQр=0,78Расчет трансформатора1,17


1.1.7 Выбираем типоразмер магнитопровода

Зная произведение (QстQок) и предел изменения RQр,из таблицы прил.П2, выбираем стандартный магнитопровод ПЛМ22Расчет трансформатора32-36, у которого значение произведения QстQок наиболее близкое к требуемому, а значение RQр лежит в требуемых пределах;


RQр min ≤ RQ треб ≤ RQр max;(4)


выбираем RQр=1,03 (0,78≤1,03≤1,17), а произведение QстQок=48,2 см4

Для выбранного сердечника выписываем:


Qст=7,04 см2;

Qок=(QстQок)/Qст=48,2/7,04=6,85 см2;

a=22 мм , b=32 мм , с=19 мм , h=36 мм ,

lст=17,9 см – длина средней магнитной линии;

Gст=0,87 кг – масса магнитопровода;


Среднюю длину витков находим по формуле:


lв ср=2(a+b+c);(5)

lв ср=2(22+32+19)=14,6 см


Зная размеры сердечника уточним значения С1 и RQр по формулам (3) и (6);


С1=0,717Расчет трансформатора;Расчет трансформатора(6)Расчет трансформатора


значение lст уточним по формуле:


lст=2(h+c+πa/2);(7)

lст=2(36+19+3,14Расчет трансформатора22/2)=17,9 см

С1=0,717Расчет трансформатора=0,647

RQр min=2,22Расчет трансформатора0,22Расчет трансформатора0,6472Расчет трансформатора4/0,9=0,908

RQр max=2,22Расчет трансформатора0,22Расчет трансформатора0,6472Расчет трансформатора6/0,9=1,363


Выбранное значение RQр лежит в требуемых пределах 0,908≤1,03≤1,363; то есть выполняется условие (4).


1.2 Определение числа витков обмоток


1.2.1 Определение падения напряжения.

Для трехобмоточных трансформаторов активные и индуктивные сопротивления вторичных обмоток растут по мере их удаления от первичной обмотки. Поэтому при расчете рекомендуется принимать значение ΔU2 или ΔU3 для обмотки, расположенной непосредственно на стержне или на первичной обмотке на 10-20% меньше, а для наружной обмотки на 10-20% больше указанных для ΔU2.

С учетом этих условий, по величине расчетной мощности и частоте для выбранной конфигурации магнитопровода выбираем значения относительных величин падения напряжения в первичной и вторичных обмотках трансформатора:


ΔU1=1%; ΔU2=1,1%; ΔU3=1,5%;


Значения ЭДС находим по формулам:


Е1=U1(1-ΔU1Расчет трансформатора10-2);(8)

Е2=U2(1+ΔU2Расчет трансформатора10-2);

Е3=U3(1+ΔU3Расчет трансформатора10-2);

Е1=380(1-1Расчет трансформатора10-2)=376 В

Е2=315(1+1,1Расчет трансформатора10-2)=318 В

Е3=16(1+1,5Расчет трансформатора10-2)=16,3 В


Для оценки порядка расположения обмоток предварительно определяем их токи:


I1’=Sр/U1=250/380=0,66 А

I2’=S2/U2=200/315=0,64 А(9)

I3’=S3/U3=50/16=3,13 А


1.2.2 Электродвижущая сила на виток


Ев=4,44fВвыбрQствыбрRстРасчет трансформатора10-4;(10)

Ев=4,44Расчет трансформатора400Расчет трансформатора1Расчет трансформатора7,04Расчет трансформатора0,9Расчет трансформатора10-4=1,13 В


1.2.3 Число витков обмоток


w1’=Е1/Ев=376/1,13=332,7

w2’=Е2/Ев=318/1,13=281,4(11)

w3’=Е3/Ев=16,3/1,13=14,4


Так как число витков обмотки низшего напряжения w3’ получилось дробным, округляем его до целого числа w3’=14 и производим перерасчет чисел витков других обмоток и магнитной индукции по формулам:


w1=w1’Расчет трансформатораw3/w3’=332,7Расчет трансформатора14/14,4=324(12)

w2=w2’Расчет трансформатораw3/w3’=281,4Расчет трансформатора14/14,4=274

Вс=ВвыбрРасчет трансформатораw3’/w3=1Расчет трансформатора14,4/4=1,03 Т


1.3 Определение потерь в стали и намагничивающего тока


1.3.1 Определяем потери в стали

Для данного сердечника из стали Э340 потери в стали определяются по формуле:


Рст=рудGст ;(13)

Рст=14Расчет трансформатора0,87 = 12,2 Вт


где Gст=0,87 кг – масса стали;

руд=14Вт/кг–удельные потери, величина которых в сердечнике зависит от магнитной индукции, марки стали, толщины листа, частоты сети и типа сердечника.


1.3.2 Активная составляющая намагничивающего тока


Iоа=Рст/Е1;(14)

Iоа=12,2/376=0,032 А


1.3.3 Реактивная составляющая намагничивающего тока для стержневых транформаторов определяется по формуле:


Iор=(Нсlст+0,8ВсnδэРасчет трансформатора104)/Расчет трансформатораРасчет трансформатораw1;(15)

Iор=(2,1Расчет трансформатора17,9Расчет трансформатора0,8Расчет трансформатора1,03Расчет трансформатора2Расчет трансформатора0,0015Расчет трансформатора104/Расчет трансформатораРасчет трансформатора324=0,136 А


где Нс=2,1 А/м – напряженность поля в стали, определяе-мая для индукции Ввыбр по кривой намагничивания;

n – число зазоров (стыков) на пути силовой линии; для стержневых трансформаторов рекомендуется выбирать конструкцию сердечника с числом стыков n = 2;

δэ – величина эквивалентного воздушного зазора в стыках сердечника трансформатора; для ленточных разрезных сердечников δэ=0,0015Расчет трансформатора0,003 см; принимаем δэ=0,0015 см;

1.3.4 Ток первичной обмотки при номинальной нагрузке


I1=Расчет трансформатора(16)

I1=Расчет трансформатора=0,77 А


где


I1a=Ioa+I’2a+I’3a=0,032+0,37+0,12=0,52 А(17)

I1p=Iop+I’2p+I’3p=0,136+0,38+0,058=0,57 А(18)

I’2a=S2cosφ2w2/w1U2=200Расчет трансформатора0,7Расчет трансформатора274/315Расчет трансформатора324=0,37(19)

I’3a=S3cosφ3w3/w1U3=50Расчет трансформатора0,9Расчет трансформатора14/16Расчет трансформатора324=0,12(20)

I’2p=S2sinφ2w2/w1U2=200Расчет трансформатора0,71Расчет трансформатора274/315Расчет трансформатора324=0,38(21)

I’3p=S3sinφ3w3/w1U3=50Расчет трансформатора0,43Расчет трансформатора14/16Расчет трансформатора324=0,058(22)


I’2a, I’3a, I’2p и I’3p – приведенные значения активной и реактивной составляющих токов вторичных обмоток.

1.3.5 Ток холостого хода


I10=Расчет трансформатора=Расчет трансформатора=0,14 А(23)


1.3.6 Относительное значение тока холостого хода


I10/I1=0,14/0,77=0,18 о.е.(24)


1.3.7 Оценка результатов выбора магнитной индукции

Так как величина относительного тока холостого хода при частоте 400Гц лежит в пределах 0,1Расчет трансформатора0,2 выбор магнитопровода на этой стадии расчета считаем оконченным.

1.3.8 Коэффициент мощности.


Cosφ1=I1a/I1=0,52/0,77=0,68(25)


1.4 Электрический и конструктивный расчет обмоток


1.4.1 Выбор плотностей тока в обмотках

Плотность тока во вторичных обмотках j2 и j3 расположенных над первичной, т.е. при расположении обмоток в порядке 1,2,3, для трансформатора со стержневым магнитопроводом берется на 15% меньше чем в первичной.

Зная среднее значение плотности тока, найдем предварительные значения плотностей тока всех обмоток.


j1=1,08jср=1,08Расчет трансформатора3,3=3,6 А/мм2

j2=j3=0,92jср=0,92Расчет трансформатора3,3=3,04 А/мм2


1.4.2 Ориентировочные значения сечения проводов


q1=I1/j1=0,77/3,6=0,21 мм2

q2=I2/j2=0,64/3,04=0,21 мм2

q3=I3/j3=3,13/3,04=1,03 мм2


1.4.3 По таблице прил.П1 выбираем стандартные сечения и диаметры проводов и выписываем необходимые справочные данные qпр, dпр, dизпр, gпр, и заносим их в таблицу 1.

Выбор марки провода определяется величиной рабочего напряжения обмотки и предельно допустимой температурой провода. Так как напряжения в обмотках до 500В и токи до нескольких ампер применяем провод марки ПЭВ-1.


Таблица 1

номер

обмотки

Марка провода qпр (мм2)

dпр

(мм)

dизпр (мм) gпр (ом/м)
ПЭВ-1 0,2043 0,51 0,56 0,084
ПЭВ-1 0,2043 0,51 0,56 0,084
ПЭВ-1 1,0568 1,16 1,24 0,0163

Проверяем заполнение окна сердечника проводом


Rок=(q1w1+q2w2+q3w3)/hc;(26)

Rок=(0,2043Расчет трансформатора324+0,2043Расчет трансформатора274+1,0568Расчет трансформатора14)/36Расчет трансформатора19=0,2


Rок отличается от принятого менее чем на 10%;

Находим фактические плотности тока в проводах по формуле:


jфакт=I/qпр;(27)

jфакт1=I1/qпр1=0,77/0,2043=3,77 А/мм2

jфакт2=I2/qпр2=0,64/0,2043=3,13 А/мм2

jфакт3=I3/qпр3=3,13/1,0568=3 А/мм2


1.4.4 Вычисляем амплитудные значения рабочих напряжений


Uр макс=Расчет трансформатораРасчет трансформатораUр;(28)

Uр макс1=Расчет трансформатораРасчет трансформатораUр1=Расчет трансформатораРасчет трансформатора380=537,4 В(ампл.)

Uр макс2=Расчет трансформатораРасчет трансформатораUр2=Расчет трансформатораРасчет трансформатора315=445,5 В(ампл.)

Uр макс3=Расчет трансформатораРасчет трансформатораUр3=Расчет трансформатораРасчет трансформатора16=22,6 В(ампл.)


Определяем испытательные напряжения обмоток;


Uисп1=1,8 кВ(ампл), Uисп2=1,6 кВ(ампл), Uисп3=0,5 кВ(ампл)


1.4.5 Определяем изоляционные расстояния

Для обеспечения надежной работы обмоток необходимо выбирать изоляционные расстояния так, чтобы во время работы в нормальных условиях и при испытании повышенным напряжением катушка трансформатора не повреждалась.

В нашем случае производим намотку обмоток на каркас толщиной 1,5 мм.

Для изоляции поверх каркаса применяем два слоя пропиточной бумаги ЭИП-3Б (толщиной 0,11 мм), т.е.


hиз ос=1,5+0,11Расчет трансформатора2=1,72 мм


Допустимую осевую длину обмотки находим по формуле:


hд=h1-2hиз1,(29)


где hиз1–толщина щечки каркаса выбираем равную 1,5 мм

h1–длина каркаса, h1=h-1=36-1=35 мм

hиз1–берем равную 1,5 мм, hиз2=2 мм, hиз3=2,5 мм,


hд1=35-2Расчет трансформатора1,5=32 мм

hд2=35-2Расчет трансформатора2=31 мм

hд3=35-2Расчет трансформатора2,5=30 мм


Толщина междуслоевой изоляции зависит от диаметра провода и величины рабочего напряжения обмотки.

Для междуслоевой изоляции первой и второй обмоток выбираем один слой пропиточной бумаги ЭИП-50(толщиной 0,09 мм).

hиз мс(1,2)=0,09 мм


Толщина междуобмоточной изоляции определяется в зависимости от величины испытательного напряжения обмотки с наибольшим напряжением.

Для междуобмоточной изоляции применяем кабельную бумагу К-12 толщиной 0,12 мм;


h'из мо=4Расчет трансформатора0,12=0,48 мм

h”из мо=3Расчет трансформатора0,12=0,36 мм


Количество слоев наружной изоляции выбирается в соответствии с рабочим напряжением последней обмотки.

При Uр<500 В, наружную изоляцию выполняют из двух слоев пропиточной бумаги ЭИП-63Б толщиной 0,11 мм и одного слоя батистовой ленты толщиной 0,16 мм.


hиз н=2Расчет трансформатора0,11+0,16=0,38 мм


1.4.6 Число витков в одном слое каждой обмотки находим по формуле:


wc=hl|ReiРасчет трансформатораdbp gh$(30)


где Rуi – коэффициент укладки провода в осевом направлении:


Rу1=1,047; Rу2=1,047; Rу3=1,052;

wc1=32/1,047Расчет трансформатора0,56=54

wc2=31/1,047Расчет трансформатора0,56=52

wc3=30/1,052Расчет трансформатора1,24=22


1.4.7 Число слоев определяем из выражения:


Nсл=w/wс;(31)


Для стержневых двухкатушечных трансформаторов под величиной w понимаем половинное число витков обмотки.


Nсл1=w1/2wс1=324/2Расчет трансформатора54=3

Nсл2=w2/2wс2=274/2Расчет трансформатора52=3

Nсл3=w3/2wс3=14/2Расчет трансформатора22=1


1.4.8 Радиальный размер каждой обмотки вычисляем по формуле:


αi=Rу2Nслdиз пр+Rмс(Nсл-1)hиз мс,(32)


Rу2 – коэффициент укладки провода в радиальном направлении,


Rу2(1)=1,06; Rу2(2)=1,06; Rу2(3)=1,055;


Rмс – коэффициент неплотности междуслоевой изоляции


Rмс(1,2)=1,068

α1,2=1,06Расчет трансформатора0,56Расчет трансформатора3+1,068(3-1)Расчет трансформатора0,09=1,97 мм

α3=1,055Расчет трансформатора1Расчет трансформатора1,24=1,3 мм


1.4.9 Определяем полный радиальный размер катушки


αк=Расчет трансформатораз+(hиз ос+α1+Rмоh’из мо+α2+Rмоh”из мо+α3+Rноhиз н)Rв,(33)

αк=0,5(1,72+1,97+0,36Расчет трансформатора1,21+1,97+0,48Расчет трансформатора1,21+1,3+0,38Расчет трансформатора

1,8)Расчет трансформатора1=9,16 мм

Расчет трансформатораз – зазор между каркасом и сердечником, равный 0,5 мм;

Rмо – коэффициент неплотности междуобмоточной изоляции

Rмо=1,21;

Rв – коэффициент выпучивания (при выполнении обмотки на каркасе принимается равным Rв=1);

Rно – коэффициент неплотности намотки наружной изоляции, (1,7-2) принимаем равным Rно=1,8;

1.4.10 Определяем зазор между катушкой и сердечником

Величина этого зазора для стержневых трансформаторов определяется по формуле с-2aкат и должна лежать в пределах от 0,5 до 1 мм.


19-2Расчет трансформатора9,16=0,68 мм,


полученное значение удовлетворяет условию 0,5<0,68<1Расчет трансформатора

1.4.11 Находим среднюю длину витка обмоток.


lср вi=(2(aк+bк)+2πri)Расчет трансформатора10-3,(34)


где aк и bк – наружные размеры каркаса, мм;


aк=a+2Расчет трансформатораз+2hиз осRв=22+2Расчет трансформатора0,5+2Расчет трансформатора1,72Расчет трансформатора1=26,4 мм(35)

bк=b+2Расчет трансформатораз+2hиз осRв=32+2Расчет трансформатора0,5+2Расчет трансформатора1,72Расчет трансформатора1=36,4 мм(36)


Расчет трансформатораз – зазор между каркасом и сердечником, мм;

значения r1,r2,r3 – определяем по формулам:


r1=α1Rв/2=1,97Расчет трансформатора1/2=0,98 мм(37)

r2=(α1+h’из моRмо+α2/2)Расчет трансформатораRв=(1,97+0,48Расчет трансформатора1,21+0,97/2)Расчет трансформатора1=

=3,04 мм(38)

r3=(α1+h’из моRмо+α2+h”из моRмо+α3/2)Расчет трансформатораRв=(1,97+1,21Расчет трансформатора0,48+

1,97+1,21Расчет трансформатора0,36+1,3/2)Расчет трансформатора1=5,6 мм(39)

lср в1=(2(aк+bк)+2πr1)Расчет трансформатора10-3=(2(26,4+36,4)+2Расчет трансформатора3,14Расчет трансформатора0,98)Расчет трансформатора 10-3=0,132 м

lср в2=(2(aк+bк)+2πr2)Расчет трансформатора10-3=(2(26,4+36,4)+2Расчет трансформатора3,14Расчет трансформатора

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: