Xreferat.com » Рефераты по коммуникации и связи » Теория автоматического управления

Теория автоматического управления

1. Анализ устойчивости замкнутой системы


1.1 Анализ устойчивости системы по корням характеристического уравнения


Запишем передаточную функцию разомкнутой системы:


Теория автоматического управления. (1)


Передаточная функция замкнутой системы имеет вид:


Теория автоматического управления.


Характеристическое уравнение замкнутой системы:

Теория автоматического управления (2)

Корни характеристического уравнения (2):

Теория автоматического управления

Характеристическое уравнение (2) имеет два правых корня, следовательно, данная замкнутая система неустойчива.


1.2 Анализ устойчивости системы по алгебраическому критерию


Для характеристического уравнения (2) замкнутой системы коэффициенты ai, i=0..3,

а0=0.00008,

a1=0.0078,

a2= – 0.03,

a3=48.

Необходимым условием устойчивости системы является:

ai>0, i=0..3

Данное условие не выполняется (a2<0), следовательно, замкнутая система неустойчива.


1.3 Анализ устойчивости системы по частотным критериям


а) Критерий Найквиста (на комплексной плоскости)

Используя передаточную функцию разомкнутой системы (1) запишем характеристическое уравнение разомкнутой системы:

Теория автоматического управления. (3)

Найдем корни характеристического уравнения (3):

Теория автоматического управления

Характеристическое уравнение разомкнутой системы (3) имеет один правый корень, следовательно, разомкнутая система неустойчива.

Построим годограф Найквиста. Для этого определим частотную передаточную функцию разомкнутой системы и ее действительную и мнимую части.


Теория автоматического управления (4)

Теория автоматического управления (5)

Теория автоматического управления (6)

Используя выражения (5) и (6), заполним таблицу:


Таблица 1.3.1

w 0 - -
P -48 0 - 0
Q 0 - 0 0

Построим годограф Найквиста (Рис. 1.3.1):


Теория автоматического управления

Рис. 1.3.1


Для случая, когда разомкнутая система неустойчива критерий Найквиста звучит следующим образом: для устойчивости замкнутой системы необходимо и достаточно, чтобы годограф Найквиста охватывал особую точку (Теория автоматического управления; Теория автоматического управления) в положительном направлении на угол Теория автоматического управления, где l – число правых корней характеристического уравнения разомкнутой системы.

Число правых корней характеристического уравнения разомкнутой системы (3) равно единице (l=1), полученный годограф не охватывает особую точку (-1, j0) на угол lπ=π (годограф охватывает особую точку в направлении по часовой стрелке), следовательно, критерий Найквиста не выполняется и система неустойчива.

б) Критерий Найквиста (на плоскости ЛЧХ)

Построим ЛЧХ заданной системы, для этого определим расчетные выражения для L(w) и φ(w):

Теория автоматического управления (7)

Теория автоматического управления (8)


Для построения асимптотической ЛАЧХ найдем параметры:

Теория автоматического управления

ЛФЧХ системы также можно построить как геометрическую сумму ЛФЧХ отдельных звеньев системы.

Графики расчетных ЛЧХ, построенные по формулам (7) и (8) изображены на рисунке (1.3.2):


Теория автоматического управления

Рис. 1.3.2


wср(частота среза) – частота, соответствующая пересечению ЛАЧХ с осью lgw;

wкр(критическая частота) – частота, соответствующая пересечению ЛФЧХ уровня –π;

Система устойчива, если выполняется условие:

wср< wкр

Данное условие не выполняется, следовательно, система неустойчива. Аналогичный вывод можно сделать по асимптотической ЛАЧХ и ЛФЧХ системы, построенной как сумма отдельных звеньев, входящих в систему, изображенной на рисунке (1.3.3):

в) Критерий Михайлова

Используя характеристическое уравнение замкнутой системы (2) введем функцию Михайлова:


Теория автоматического управления, где

Теория автоматического управления,

Теория автоматического управления.


Для заданной системы функция Михайлова примет вид:


Теория автоматического управления

Теория автоматического управления (9)

Теория автоматического управления (10)


Графическое изображение функции Михайлова на комплексной плоскости при Теория автоматического управления называется годографом Михайлова. Для устойчивости системы n-го порядка необходимо и достаточно, чтобы годограф Михайлова начинался на вещественной положительной полуоси и при увеличении частоты до ∞ проходил последовательно в положительном направлении n квадрантов, нигде не обращаясь в ноль.

Используя выражения (9) и (10), заполним таблицу:

Таблица 1.3.3

w 0 77,625 -
X(w) 47 0 - -∞
Y(w) 0 -39,748 0 -∞

Построим годограф Михайлова (Рис. 1.3.4):


Теория автоматического управления

Рис. 1.3.4


Полученный годограф начинается на вещественной положительной полуоси, проходит 2 квадранта в отрицательном направлении, таким образом, критерий Михайлова не выполняется, следовательно, система неустойчива.



2. Построение области устойчивости в плоскости параметра Кр


Построим область устойчивости, используя критерий Гурвица.

Запишем характеристическое уравнение замкнутой системы в общем виде:


Теория автоматического управления.

Теория автоматического управления

Теория автоматического управления


Для конкретного случая характеристическое уравнение замкнутой системы имеет вид:


Теория автоматического управления (11)


Для устойчивости системы КР должно удовлетворять необходимому условию


Теория автоматического управления

Теория автоматического управления

Рис. 2.1


Но заметим, что исходный КР удовлетворяет этому условию, и его изменением устойчивости замкнутой системы добиться невозможно, т. к. в ХУ ЗС (2.3) а2<0, и зависит этот коэффициент от постоянных времени.

Построим область устойчивости в плоскости параметра Т2

Необходимое условие устойчивости:

Теория автоматического управления Теория автоматического управления


Достаточное условие устойчивости для системы третьего порядка по критерию Гурвица имеет вид:


Теория автоматического управления Теория автоматического управления

Теория автоматического управления

Теория автоматического управления

Теория автоматического управления


Учитывая все условия:


Теория автоматического управления

Теория автоматического управления

Рис. 2.2



3. Коррекция системы


Для обеспечения устойчивости системы необходимо ввести корректирующее звено с передаточной функцией вида:


Теория автоматического управления


Структурная схема скорректированной системы (Рис. 3.1):


Теория автоматического управления

Рис. 3.1


Передаточная функция скорректированной разомкнутой системы имеет вид:


Теория автоматического управления (12)


Определим параметр Т из условия обеспечения минимального запаса устойчивости (Lзап=5 дБ).

Запас по амплитуде определяется на критической частоте – частоте, на которой функция φ(w) принимает значение, равное -π

Расчетное выражение для φ(w):

Теория автоматического управления

Теория автоматического управления, отсюда

Теория автоматического управления (13)


Расчетное выражение для L(w):


Теория автоматического управления (14)


Подставим найденное выражение Т (13) в функцию L(w) (14):


Теория автоматического управления


На критической частоте значение функции L(w), исходя из условия обеспечения минимального запаса устойчивости, должно быть равно не менее 5 дБ.


Теория автоматического управления


Из данного выражения найдем wкр

wкр=308,4185, следовательно,

Т=0,001198

Анализируя данное значение и область устойчивости, найденную в п. 2, можно сделать вывод, что введение корректирующего звена с передаточной функцией Теория автоматического управления обеспечит не только устойчивость системы, но и более чем минимальный запас устойчивости по амплитуде.

4. Построение и анализ ЛЧХ системы и годографа Найквиста скорректированной системы


Используя передаточную функцию скорректированной разомкнутой системы (12), запишем характеристическое уравнение скорректированной разомкнутой системы:


Теория автоматического управления (15)


Найдем корни характеристического уравнения (15):

Теория автоматического управления

Уравнение (15) имеет один правый корень, следовательно, скорректированная разомкнутая система неустойчива.

Построим годограф Найквиста. Для этого определим частотную передаточную функцию скорректированной разомкнутой системы и ее действительную и мнимую части.


Теория автоматического управления

Теория автоматического управления (16)

Теория автоматического управления (17)


Используя выражения (16) и (17), заполним таблицу:


Таблица 4.1

w 0 - 328,8237
P -48 0 -0,485 0
Q 0 - 0 0

Построим годограф Найквиста (Рис. 4.1):


Теория автоматического управления Теория автоматического управления

Рис. 4.1


Для случая, когда разомкнутая система неустойчива критерий Найквиста звучит следующим образом: для устойчивости замкнутой системы необходимо и достаточно, чтобы годограф Найквиста охватывал особую точку (Теория автоматического управления; Теория автоматического управления) в положительном направлении на угол Теория автоматического управления, где l – число правых корней характеристического уравнения разомкнутой системы.

Число правых корней характеристического уравнения разомкнутой системы равно единице (l=1), полученный годограф охватывает особую точку (-1, j0) на угол lπ=π, следовательно, критерий Найквиста выполняется и система устойчива.

Построим ЛЧХ разомкнутой скорректированной системы:

Определим расчетные выражения для L(w) и φ(w):


Теория автоматического управления (18)

Теория автоматического управления (19)

Для построения асимптотической ЛАЧХ найдем параметры:


Теория автоматического управления


ЛФЧХ системы также можно построить как геометрическую сумму ЛФЧХ отдельных звеньев системы.

Графики расчетных ЛЧХ, построенные по формулам (18) и (19), изображены на рисунке (4.2):


Теория автоматического управления

Рис. 4.2


wср(частота среза) – частота, соответствующая пересечению ЛАЧХ с осью lgw;

wкр(критическая частота) – частота, соответствующая пересечению ЛФЧХ уровня –π;

Система устойчива, если выполняется условие:

wср< wкр

Данное условие выполняется, следовательно, система устойчива. Запас устойчивости по амплитуде: Lзап= 5,8 дБ

Запас устойчивости по фазе: φзап=0,2 рад

Аналогичный вывод можно сделать по асимптотической ЛАЧХ и ЛФЧХ системы, построенной как сумма отдельных звеньев, входящих в систему.



5. Анализ качества системы в переходном режиме


Определим прямые показатели качества, для этого построим переходную характеристику:


Теория автоматического управления, где (20)

Теория автоматического управления (21)


Ф(s) – передаточная функция скорректированной замкнутой системы.

Переходная характеристика, построенная по формуле (20), изображена на рисунке (5.1):


Теория автоматического управления

Рис. 5.1


По рисунку (5.1) определим: hmax=0.3; hуст=0.17; h(0)=0, время регулирования на уровне 0.05 (hуст-h(0)).

Коридор: [0.95 (hуст-h(0)); 1.05 (hуст-h(0))].

Коридор: [0.1615; 0.1785].

Время регулирования: tрег= 0,15 с.

Перерегулирование равно:

Теория автоматического управления (5.3)

Теория автоматического управления.


Определим показатель коллебательности. Используя передаточную функцию скорректированной замкнутой системы (21), запишем частотную передаточную функцию скорректированной замкнутой системы:


Теория автоматического управления


Выделим действительную и мнимую части:


Теория автоматического управления

Теория автоматического управления


Модуль частотной передаточной функции замкнутой системы:


Теория автоматического управления (22)


Построим амплитудно-частотную характеристику, используя выражение (22) (Рис. 5.2):


Теория автоматического управления

Рис. 5.2


По рисунку (5.2) определим: Теория автоматического управления; Теория автоматического управления.

Показатель колебательности M есть отношение максимальной ординаты амплитудно-частотной характеристики замкнутой системы к начальной ординате:


Теория автоматического управления

Теория автоматического управления


Определим запасы устойчивости системы.

Найдем критическую частоту – частоту, на которой значение φ(w) равняется –π.


Теория автоматического управления (23)

Теория автоматического управления


wкр=328,824

Рассчитаем запас по амплитуде:

Теория автоматического управления (24)

Теория автоматического управления


Запас по амплитуде: Lзап= 5,797 дБ

Найдем частоту среза – частоту, на которой значение L(w) равняется 0, используя выражение (24):

Теория автоматического управления

wср=232,624

Рассчитаем запас по фазе, используя выражение (23):

Теория автоматического управления

Запас по фазе: φзап=0,168 рад.



6. Анализ качества системы в установившемся режиме


Установившаяся ошибка системы равна:


Теория автоматического управления (25)

εустХо=С0Х0(t)+ С1Х'0(t)+…

εуст f =С0F0(t)+ С1F'0(t)+…


Так как в заданном случае задающее и возмущающее воздействия – константы, необходимо найти лишь первые коэффициенты функций ошибок.

Запишем передаточную функцию замкнутой системы по ошибке по задающему воздействию:


Теория автоматического управления

Теория автоматического управления


Установившаяся ошибка системы по задающему воздействию:

Теория автоматического управления

Запишем передаточную функцию замкнутой системы по ошибке по возмущению:


Теория автоматического управленияТеория автоматического управления


Установившаяся ошибка системы по задающему воздействию:

Теория автоматического управления

Рассчитаем установившуюся ошибку системы, используя выражение (25):

Теория автоматического управления

Приведем размерность установившейся ошибки к размерности входного сигнала:

Теория автоматического управления;

Теория автоматического управления

Система является статической как относительно возмущения, так и относительно задающего воздействия, установившаяся ошибка системы равна 7/282.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: