Мониторы

что позволяет в промежутках между импульсами использовать линию связи для стандарта DDC. Передаваемое сообщение длиной 128 байт включает название фирмы-изготовителя монитора, код изделия, серийный номер, информацию о поддерживаемых частотах синхронизации и т.п., которые соответствуют установленным режимам. Для поддержки DDC 1 в мониторе устанавливается ПЗУ, а на видеоадаптере – регистры приема информации.

Стандарт DDC 2 предусматривает двунаправленную передачу данных между монитором и системой. Разработано также несколько дополнительных стандартов, самым распространенным из которых является DDC2B. В соответствии с ним передача полезной информации происходит по той же линии, что и по стандарту DDC 1, а для тактового сигнала используется отдельная линия. Работая по этому стандарту, видеоадаптер может запросить у монитора необходимую информацию, а также получить данные о его текущем состоянии. Для реализации стандарта DDC2B на мониторе должен быть установлен микропроцессор.

Стандарт DDC 2B имеет большие возможности по конфигурации монитора, чем DDC 1. Обычно если устройство соответствует стандарту DDC 2B, то поддерживается и DDC 1.

Еще шире круг возможностей у редкого пока стандарта DDC 2AB, который позволяет не только получать информацию о мониторе по запросу системы, но и производить регулировку параметров монитора при помощи сигналов из процессорного блока через шину ACCESS Bus. Например, можно осуществлять режим регулировки видеомоды при помощи клавиатуры. Обмен происходит по тем же линиям стандартного кабеля, что и в случае DDC 2B. Видеоадаптер также должен поддерживать интерфейс DDC 2AB. Данный интерфейс совместим со всеми предшествующими вариантами интерфейса DDC и поддерживает все их функции. Можно реализовать интерфейс DDC 2AB, используя видеокарту, не обладающую необходимыми функциями. Для этого предусмотрена возможность обмена данными между компьютером и монитором через параллельный порт. При этом на компьютере устанавливается дополнительный разъем.


6 Стандарты для мониторов


В настоящее время в данной области отсутствует единая международная система стандартов, поэтому существует множество национальных стандартов, ряд из них стали общепризнанными.

Большинство стандартов являются общими для всех узлов компьютера, однако есть и специфические, например ТСО’91, которые относятся только к мониторам.

Разработкой единых стандартов занимается Международная организация по стандартизации (International Standards Organization, ISO). Одним из них является стандарт ISO 9001, который пришел на смену применяемому ранее стандарту BS 5750.Этот стандарт относится только к качеству и уровню производства аппаратуры, но не к самой аппаратуре, поэтому ссылка на него не может служить гарантией качества монитора.

Стандарты безопасности


IEC 950 –стандарт Международной электротехнической комиссии (International Electrotechnical Commission), определяющий нормы электробезопасности на электротехническое оборудование. Целью стандарта является предотвращение повреждений и ущерба, которые могут возникнуть в результате поражения электрическим током, загорания, короткого замыкания, механических поломок и т.п.

Еще одним стандартом можно назвать часть комплексного норматива СЕ mark, или просто СЕ. Это общий стандарт для стран ЕС, тем не менее некоторые страны имеют свои национальные стандарты безопасности, поэтому в документации часто указывается на соответствие аппаратуры нормативам DEMKO (Датского электротехнического комитета сертификации и контроля качества), NEMCO (Электротехнического института управления качеством Норвегии), SEMCO (Института сертификации и контроля качества Швеции) и финскому стандарту FIMKO.

В комплексном стандарте TŰV/Rhienald также содержится раздел GS, посвященный безопасности.

К стандартам электробезопасности можно отнести и документы, определяющие виды сетевых соединителей (вилок). К ним относятся нормативы UL и CSA.


Эргономические стандарты


Эта группа стандартов включает требования и рекомендации по охране здоровья и условий труда. Они касаются освещения, конструкции аппаратуры, удобства расположения органов управления и экрана монитора относительно уровня глаз, возможностей поворота дисплея для обеспечения его удобного положения и т.п. К числу эргономических стандартов относятся международный стандарт BS 7179 и пришедший ему на смену ISO 9241-3. Эргономические нормы включены в комплексный стандарт TŰV/Rheinald (подраздел TŰV/Rheinal Ergnomie), а также в новый комплексный стандарт ТСО`95.

Наиболее важные эргономические требования к мониторам, связанные с частотой кадровой развертки не ниже 75 Гц, заключены в стандарте ErgoVga ассоциации VESA, но этот стандарт почему-то почти не используется.

Отдельно следует упомянуть стандарты по электромагнитным излучениям, которые также можно было бы отнести к эргономическим.


Стандарты уровней излучений


Наиболее известным в данной группе является шведский стандарт MPR II (Swedish National Board of Measurements and Testing), принятый в конце 1990 г. Он определяет уровень электромагнитного излучения в двух диапазонах – очень низких частот (2-400 кГц) и сверхнизких частот (5 Гц – 2 кГц), а также величину статического заряда на мониторе и величину рентгеновского излучения. Затем появился более жесткий стандарт ТСО’91, который в 1992 г. был дополнен требованиями по энергосбережению, и весь документ стал называться стандартом ТСО’92.

Самый последний стандарт ТСО’95 содержит требования по электромагнитным излучениям, идентичные стандарту ТСО’91, плюс экологические нормы (Environmental requirements). В частности, в соответствии с этим стандартом в конструкциях мониторов не применяются галогеносодержащие пластмассы, а их упаковка не должна содержать хлоридов и бромидов и подлежит вторичной переработке. Требования вышеперечисленных стандартов приведены в табл. 5.

Чтобы монитор соответствовал требованиям ТСО`91 по уровням излучения, на него устанавливают для уменьшения электромагнитного излучения специальные элементы (компенсирующие катушки или экранирующие кольца из специального сплава с высокой магнитной проницаемостью), которые располагают вокруг отклоняющей системы и/или в области цепей и элементов строчной развертки.

Новый стандарт ТСО`95 только начинает внедряться в производстве мониторов.


Таблица 5. Требования стандартов на уровни излучений

Стандарт

Напряженность

переменного

электрического поля

для диапазонов*, В/м

Напряженность

переменного

магнитного поля

для диапазонов*, нТл

Электро-

статический

потенциал*, В


5 Гц–2 кГц 2 кГц–400 кГц 5 Гц–2 кГц 2 кГц–400 кГц
MPR II

< 25

< 2.5

< 250

< 25

< 500

TCO’91(92)

< 10 **

< 1.0 **

<200 **

< 25

< 500

TCO’95

< 10 **

< 1.0 **

< 200 **

< 25

< 500

Примечания:

*уровни напряженности измеряются на расстоянии 50 см от монитора,

**измерения производятся перед экраном на расстоянии 30 см.


Нормы на электромагнитные излучения приводятся также в стандартах ISO 9241-3, TUV/Rhienald Ergonomee и ряде других, однако наиболее жесткими, а потому общепризнанными являются TCO`91 и TCO`95.


Электромагнитная совместимость


Эта группа стандартов (EMC – Electro-Magnetic Compatibility) посвящена проблемам воздействия мониторов на окружающее радиоэлектронное оборудование и защиты самих мониторов от влияния внешних устройств. Нежелательное воздействие устройств друг на друга может осуществляться через электромагнитное излучение (RFI – Radio Frequency Interference), а также по сети питания.

Общепризнанным в данной области является стандарт, разработанный Федеральной комиссией по связи США (Federal Communication Commission, FCC). Существуют две его разновидности – FCC класса А для промышленных устройств и FCC класса В для офисных и домашних устройств. Стандарт FCC В “строже”, чем FCC А. Монитор (или любое другое устройство), соответствующий этому стандарту, не должен влиять на прибор, от которого его отделяют 3 м и одна стена.

Существуют и другие стандарты по электромагнитной совместимости, например CE mark, который является нормативом для стран ЕС. Это комплексный стандарт, включающий кроме требований ЕМС еще и правила безопасности. К этой же категории относятся следующие стандарты: канадский DOC B, а также VCCI и CIPSPR 22.

Однако следует отметить, что монитор, даже отвечающий указанным стандартам, может создавать помехи в чувствительных приемных устройствах (в теле- и радиоприемниках), поэтому в некоторых документах приводятся рекомендации по уменьшению такого влияния (изменение ориентации и положения, подключение к другой розетке и т.д.).


Экологические стандарты


При массовом производстве мониторов (а также компьютеров) нельзя не учитывать их влияния на окружающую среду (в том числе и на человека) на всех стадиях их “жизни” – при изготовлении, эксплуатации и после окончания срока службы. В связи с этим были разработаны экологические стандарты (Environmental), определяющие требования к производству и материалам, которые могут использоваться в конструкции приборов. Эти материалы не должны содержать фреонов (что связано с заботой об озоновом слое планеты), хлоридов и бромидов (в частности, поливинилхлорида). Сами аппараты, тара и документация должны допускать нетоксичную переработку после использования.

К экологическим стандартам относятся TCO`95 и BS 7750.


Стандарты пониженного энергопотребления


Эти стандарты определяют допустимые уровни мощности, потребляемой устройством, находящемся в неактивном режиме и призваны обеспечивать экономию энергии. Данные стандарты можно применять не только к мониторам, но к другим периферийным устройствам компьютера (лазерным принтерам, модемам, внешним накопителям и т.д.), а также самому системному блоку.

Наиболее распространенный и известный стандарт этого класса определен в программе Energy Star, разработанной американским Агентством по охране окружающей среды (EPA – Environmental Protection Agency).

В нем заданы допустимые нормы энергопотребления для компьютеров и периферийных устройств, находящихся в т.н. “ждущем” режиме, то есть в том случае, когда устройство включено, но активно не используется. Данный режим может также называться дежурный, ожидания, экономичный, низкого энергопотребления, ”спящий” и т.д. При этом допустимое значение энергопотребления любого из устройств (за редким исключением) не должно превышать 30 Ватт. Производители самых распространенных устройств (системных блоков, дисплеев, принтеров) добиваются выполнения этих требований различными способами.

Для видеосистемы (графический адаптер и монитор), в которой монитор является основным потребителем электроэнергии, забирающем в активном режиме работы от 60 до 250 и более Ватт, уровень требуемой мощности в ждущем режиме не должен превышать 30 Ватт. Выполнение стандарта EPA в этой части выполняется двумя способами.

Первый способ – за счет поддержки производителями мониторов и графических карт стандарта энергосбережения “Сигнализация для управления энергопотребление дисплеев”, разработанного ассоциацией стандартов видеоэлектроники (VESA DPMS – Video Electronics Standard Association Display Power Management Signaling), в котором заданы три сберегающих режима работы дисплея и характеристики управляющих сигналов, их включающие. Значение энергопотребления в различных режимах имеет следующие уровни, определяемые работой его отдельных узлов:

  • Standby Mode (дежурный режим): у дисплея отключена горизонтальная развертка, а уровни яркости и контрастности видеосигнала снижены до минимума, потребляемая мощность уменьшена на 20-30% от уровня нормальной работы, возможно почти мгновенное восстановление работоспособности;

  • Suspend Mode (ждущий режим): подается сигнал горизонтальной развертки, но отключаются вертикальная синхронизация и высокое напряжение, энергопотребление – 20-30% от нормального уровня, для выхода в режим работы необходимо 3-5 секунд;

  • Power Off (квазивыключенный режим): отключены все узлы, кроме блока управления, обеспечивается самый низкий уровень потребляемой мощности – 5-10% от рабочего состояние, для перехода в которое может понадобиться до 10 секунд.

Выдача сигналов на перевод дисплея в указанные режимы выполняется либо программно-аппаратным способом (при условии, что монитор соответствует стандарту Energy Star).

Программно-аппаратный способ реализуется под управлением микросхемы BIOS, находящейся на материнской плате, или же с помощью графического адаптера. Программное решение основывается на том, что режимами работы монитора управляют программы-менеджеры питания, носящие такое же название, как и раздел программы Setup – Power Management, и заставляющие графический адаптер посылать управляющий сигнал в стандарте VESA DPMS на монитор. При этом в большинстве случаев пользователь может сам задать или выбрать из предложенных значений время, определяющее момент перехода с одного режима потребления энергии на другой. Единственным недостатком спецификации является зависимость от аппаратных или программных средств.

Второй способ основан на работе специальных резидентных программ-хранителей экрана (Screen-Saver’ов), например , After Dark Started Edition и Ecologic Power Manager. При работе указанного способа переход дисплея в ждущий режим происходит сразу же после гашения экрана, не используя многорежимность, и восстановление активного состояния происходит с небольшой задержкой. Применение данного способа позволяет выполнить требования EPA даже тем, кто не является счастливым обладателем “бережного” монитора или графическим адаптером от VESA DPMS.

Более обобщенные данные о стандартах для мониторов приведены в табл. 6. Здесь выделены основные категории параметров, определяемые различными стандартами.


Таблица 6. Параметры мониторов, определяемые стандартами.

Стандарт,

спецификация

Регулируемые параметры


Качество

Безопасность

Эргономичность

LR

Рентген

ЭМ совместимость

Экология

Энергосбережение

ISO 9001

+








IEC 950


+







CE mark


+




+



D,N,S


+







UL,CSA


+







MPR II




+





TCO`91




+





TCO`92




+




+

TCO`95



+

+



+

+

FCC A,B






+



DOC B,VCCI






+



CSPR 22






+



ISO 9241-3



+

+





DHHS,PTB,DNHW





+




EPA En St,

NUTEC








+

DPMS








+

TUV/Rh Erg


+







TUV/Rh GS

+









7 Мультимедиа мониторы


Сейчас, когда большинство компьютеров имеют дисководы CD-ROM, появились мониторы со встроенными динамиками, расположенными по бокам или внизу передней панели. Теоретически они представляют собой изящное и дешевое решение для пользователей, которые хотят иметь простую звуковую систему и в то же время слушать нечто большее, чем жалобный сигнал обычного динамика. У некоторых из таких мониторов также имеются встроенные микрофоны, позволяющие записывать голосовые команды. Эта особенность может оказаться полезной, если вы пользуетесь голосовой почтой или управляете своим компьютером с помощью голоса.

Однако столь простая идея – создать мониторы, снабженные средствами мультимедиа, связана с некоторыми проблемами. Во-первых, встроенные микрофон и динамики расположены на фиксированном, слишком близком расстоянии друг от друга; и если микрофон достаточно чувствителен для того, чтобы “поймать” ваш голос с некоторого расстояния, то весьма вероятно, что шум из динамиков также будет записываться и усиливаться. В результате будет слышен постоянный шум в качестве фона записи.

Во-вторых, поскольку размеры встроенных громкоговорителей ограничены, вряд ли можно получить качественный звук. Мощность даже средних по размеру шестидюймовых динамиков достигает 4 Вт (RMS) , что превосходит мощность звука любого из встроенных в монитор динамиков, выпущенных на данный момент.

Кроме того, в некоторых мультимедийных мониторах при максимальной мощности громкоговорителей изображение начинает “дрожать”.


8 Активная матрица

Монитор на электронно-лучевой трубке громоздок и потребляет много энергии. Поэтому, чтобы избавиться от кинескопов, продолжаются интенсивные разработки новых типов персональных компьютеров.

Так появились и быстро канули газо-плазменные дисплеи, применявшиеся в портативных компьютерах. Наибольшее распространение в портативных компьютерах notebook получили монохроматические и цветные жидкокристаллические LCD-дисплеи. Технология LCD-дисплеев быстро прогрессирует и достигла сегодня весьма высокого совершенства. Черно-белые LCD-дисплеи сегодня не уступают VGA-мониторам на кинескопах. Самыми неприятными недостатками жидкокристаллического считаются высокая инерционность изображения и медлительность, особенно заметные при работе с мышкой или трекболом в любых графических приложениях , например, в средеWindows.

Важнейшим и наиболее перспективным достижением в этой области сегодня является цветной TFT-дисплей или, как его часто называют, активная матрица. Активно-матричные тонкопленочные транзисторные дисплеи принципиально отличаются от обычных LCD-дисплеев, использующих пассивно-матричную технологию.

Каждый пиксель TFT-дисплея содержит отдельный транзистор, управляющий группой из трех цветных точек. Это так называемый “логический пиксель”, состоящий из трех жидкокристаллических элементов, видимых сквозь три основных цветовых фильтра – красный, синий и зеленый. Все пиксели изнутри подсвечиваются флюоросцентным цветом. В выключенном состоянии жидкокристаллический элемент поворачивает поляризацию света на 90° проникающего через задний фильтр. В результате свет не может проникнуть через передний поляризующий фильтр. Но при подаче напряжения на поляризующий элемент, поляризация света поворачивается на 90° и свет становится видимым. Таким образом, комбинируя пропускание света через красный, синий и зеленый фильтры, можно в каждом логическом пикселе создать практически любой оттенок с высокой яркостью и насыщенностью цветов и с чрезвычайно высокой контрастностью.

Конструктивно TFT-дисплей представляет собой многослойный “бутерброд” из транзисторов и химических жидкокристаллических материалов, зажатых между двумя стеклянными панелями. Число управляющих транзисторов в таком активно-матричном VGA-дисплее с диагональю 10,4 дюйма приближается к 1 миллиону. Именно поэтому цена TFT-дисплея составляет сегодня более тысячи долларов.

Активно-матричный дисплей обладает поразительными возможностями. Картинка на экране TFT-дисплея обновляется 80 раз в секунду. В пассивно-матричных LCD-дисплеях картинка обновляется примерно 10 раз в секунду.

Первые модели активно-матричных TFT-дисплеев появились в 1991 году, когда на рынок поступили портативные компьютеры фирм Dolch, Sharp и Hitachi с такими цветными жидкокристаллическими дисплеями, воспроизводящими до восьми цветов. Современный TFT-дисплей воспроизводит быстро обновляющуюся картинку с разрешением 800х600 точек, состоящую одновременно из 256 цветов (из палитры в 16 миллионов оттенков). Столь широкий спектр цветовых оттенков позволяет выводить на экране изображения, которые выглядят весьма четко, естественно и живо.

Активная матрица в портативных компьютерах открывает широкие области применения во всех сферах деятельности, где качество графических образов имеет особое важное значение – в системах автоматизированного проектирования, в настольных издательских системах, в деловой и компьютерной графике, в архитектуре и других подобных областях. А со временем активная матрица, вероятно, сможет вытеснить обычные мониторы в настольных компьютерах и даже кинескопы в телевизорах.


9 Перспективы развития


Безусловно, улучшения параметров мониторов следует ожидать в ближайшие годы. Конечно, будет совершенствоваться технология ЭЛТ. Основные направления здесь – “уплощение” экрана, уменьшение размеров люминофорных элементов до 0.2 мм, повышение эффективного использования площади кинескопа (за счет либо овальных люминофорных элементов, либо более широкого применения апертурных масок) и разработка новых антибликовых и антистатических покрытий, а также покрытий, повышающих контрастность изображения и улучшающих цветопередачу. Будет распространено применение динамической фокусировки.

Электронные системы мониторов начнут развиваться в направлении повышения частот синхронизации и полосы частот видеотракта, чтобы при эффективном разрешении частота обновления кадров была не ниже 80-85 Гц. Станет обязательным применение экранного меню на всех моделях. Должны расшириться возможности органов управления монитором и коррекции любых видов искажений, что позволит несколько увеличить реальные размеры изображения. За счет увеличения количества заводских установок можно будет вообще исключить процедуру ручной регулировки.

Возможно, большее распространение получит интерфейс DDC 2AB (если его не опередит USB), который позволит производить настройки при помощи мыши или клавиатуры.

Должен появиться новый эргономический стандарт по уровням излучений, более жесткий, чем устаревший ТСО’91.

Следует ожидать развития мультимедиа-мониторов, которые смогут действительно обеспечивать хороший звук без ущерба для изображения, что пока остается только пожеланием. Кроме того, нормой должно стать оснащение мониторов микрофоном и видеокамерой.

Сейчас разработчики все чаще говорят о необходимости внедрения шины USB (Universal Serial Bus), которая позволит решить ряд проблем, в том числе и мультимедиа-мониторов. Шина USB – это универсальная последовательная шина, которая должна заменить параллельные, последовательные, клавиатурные и “мышиные” порты. Все устройства (принтер, модем, колонки сканер, клавиатуру и т.п.) можно будет подключать к стандартному разъему и производить любое наращивание конфигурации за счет простых взаимных соединений: например, к USB-монитору подключить клавиатуру и аудиосредства мультимедиа; к клавиатуре, в свою очередь, модем и мышь, и т.д.

Шина USB будет иметь скорость обмена на уровне 12 Мбит/с и должна легко реализовывать при этом функции Plug and Play. Для подключения видеокамеры потребуется другой, более скоростной интерфейс (SCSI или новый стандарт IEEE-1394, известный как FireWire). При наличии шины USB стандарт DDC может оказаться ненужным, а регулировки монитора будут осуществляться с клавиатуры. Внедрение этого стандарта потребует адаптации некоторых традиционных составляющих компьютера, однако его разработчики сулят большие выгоды за счет устранения конфликтов распределения системных ресурсов. Будет возможна “горячая” коммутация элементов компьютера.

В скором времени жидкокристаллические мониторы станут серьезными соперниками мониторов на ЭЛТ. LCD- дисплеи обладают целым рядом преимуществ перед любыми CRT-моделями. Они занимают меньше места на рабочем столе, имеют значительно меньший уровень излучения и меньшее энергопотребление и, следовательно, существенно надежнее своих собратьев. Характеристики изображения этих аппаратов пока не так хороши, как у мониторов на основе ЭЛТ, однако быстрое совершенствование ЖК-дисплеев и технологичность их производства позволяют ожидать в будущем уменьшения их стоимости и приближения к качеству электронно-лучевых устройств.


Список используемой литературы


[1] Hard’n’Soft #3 ’97 – Юнион Паблишер

[2] Hard’n’Soft #4 ’97 – Юнион Паблишер

[3] А. Петроченков Hardware-компьютер и периферия. – Манускрипт, 1995

[4] Большая Энциклопедия Кирилла и Мефодия. K&M, 1996.

[5] Энциклопедия персонального компьютера Кирилла и Мефодия. K&M, 1996

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: