Xreferat.com » Рефераты по архитектуре » Расчет систем газоснабжения района города

Расчет систем газоснабжения района города

width="574" height="870" />


1

2

3

4

5

6

7

8

9

10

11

12


Рис. 1 График годового потребления газа.

7. Выбор и обоснование системы газоснабжения.

Системы газоснабжения представляют собой сложный комплекс соо­ружений. На выбор системы газоснабжения города оказывает влияние ряд факторов. Это прежде всего :размер газифицируемой территории, особенности ее планировки, плотность населения, число и харак­тер потребителей газа, наличие естественных и искусственных пре­пятствий для прокладки газопроводов (рек, дамб, оврагов, железнодо­рожных путей, подземных сооружений и т.п.).При проектировании системы газоснабжения разрабатывают ряд вариантов и производят их технико-экономическое сравнение. Для строительства применяют наи­выгоднейший вариант.

В зависимости от максимального давления газа городские газопро­воды разделяют на следующие группы:

  • высокого давления 1 категории с давлением от 0,6 до 1,2 МПа;

  • среднего давления от 5 кПа до 0.3 МПа;

  • низкого давления до 5 кПа;

Газопроводы высокого и среднего давления служат для питания го­родских распределительных сетей среднего и низкого давления. По ним идет основная масса газа ко всем потребителям города. Эти га­зопроводы являются основными артериями, питающими город газом. Их выполняют в виде колец, полу колец иди лучей. Газ в газопроводы вы­сокого и среднего давления подается от газораспределительных станций (ГРС).

Современные системы городских газовых сетей имеют иерархическую систему построения, которая увязывается с приведённой выше классификацией газопроводов по давлению. Верхний уровень составляют газопроводы высокого давления первой и второй категории, нижний газопроводы низкого давления. Давление газа при переходе с высокого уровня на более низкий постепенно снижается. Это осуществляется с помощью регуляторов давления, установленных на ГРП.

По числу ступеней давления, применяемых в городских газовых сетях, они подразделяются на:

  • двухступенчатые, состоящие из сетей высокого или среднего давления и низкого давления;

  • трёхступенчатые, включающие газопроводы высокого, среднего и низкого давления;

  • многоступенчатые, в которых газ подаётся по газопроводам высокого (1 и 2 категорий) давления, среднего и низкого давления.

Выбор системы газоснабжения в городе зависит от характера потребителей газа, которым нужен газ соответствующего давления, а также от протяженности и нагрузки газопроводов. Чем разнообразнее потребители газа и чем большую протяженность и нагрузку имеют газопроводы, тем сложнее будет система газоснабжения.

В большинстве случаев для городов с населением до 500 тысяч человек наиболее экономически целесообразной является двухступенчатая система. Для больших городов с населением более 1000000 человек и наличием крупных промпредприятии предпочтительной является трёх или многоступенчатая системы.


8.Определение оптимального числа ГРС и ГРП.

8.1 Определение числа ГРС.


Газораспределительные станции стоят во главе систем газоснабжения. Через них идёт питание кольцевых газопроводов высокого или среднего давления. К ГРС газ поступает из магистральных газопроводов под давлением 6 7 МПа. На ГРС давление газа снижается до высокого или среднего. Кроме того, на ГРС газ приобретает специфический запах. Его одоризируют. Здесь газ также подвергается дополнительной очистке от механических примесей и подсушивается.

Выбор оптимального числа ГРС для города является одним из важ­нейших вопросов. С увеличением числа ГРС уменьшаются нагрузки и радиус действия городских магистралей, что приводит к уменьшению их диаметров и снижению затрат на металл. Однако увеличение числа ГРС увеличивает затраты на их сооружение и строительство магист­ральных газопроводов, подводящих газ к ГРС, увеличиваются эксплуа­тационные расходы за счет содержания обслуживающего персонала ГРС.

При определении числа ГРС можно ориентироваться на следующее:

  • для небольших городов и посёлков с населением до 100 120 тысяч человек наиболее рациональными являются системы с одной ГРС;

  • для городов с населением 200 300 тысяч человек наиболее рациональными являются системы с двумя и тремя ГРС;

  • для городов с населением более 300 тысяч человек наиболее экономичными являются системы с тремя ГРС.

ГРС, как правило, располагаются за городской чертой. Если число ГРС более одной, то они располагаются с разных сторон города. ГРС соединяются как правило двумя нитками газопроводов, что обеспечивает более высокую надёжность газоснабжения города. Очень крупные потребители газа ( ТЭЦ, промпредприятия, металлургические заводы и т. п. ) питаются непосредственно от ГРС.


8.2 Определение оптимального числа ГРП.


Газорегуляторные пункты стоят во главе распределительных газовых сетей низкого давления, питающих газом жилые дома. Оптимальное число ГРП определяется из соотношения

n ОПТ = V ЧАС / V ОПТ (шт),

где V час - часовой расход газа на жилые дома, м3/ч.;

V ОПТ - оптимальный расход газа через ГРП, м3/ч.

Для определения V ОПТ необходимо вначале определить оптимальный радиус действия ГРП, который должен находиться в пределах 400 800 метров. Этот радиус определяется по формуле:

R ОПТ = 249 • (P0,081 / 0,245• (m • e)0,143) (м),

где P - расчетный перепад давления в сетях низкого давления (1000 1200 Па);

 - коэффициент плотностей сетей низкого давления, 1/м;

= 0,0075 + 0,003 m / 100 (1/м),

m - плотность населения по району действия ГРП, чел/га;

e - удельный часовой расход газа на одного человека, м3/чел.ч, который задаётся или вычисляется, если известно количество жителей (N), потребляющих газ, и известно количество газа (V), потребляемого ими в час

e = V / N 3/чел. ч)

Оптимальный расход газа через ГРП определяется из соотношения:

V ОПТ = m e R ОПТ 2/ 5000

Полученное оптимальное число ГРП используют при конструировании газовых сетей низкого давления. Сетевые ГРП размещают, как правило, в центре газифицируемой территории так, чтобы все потребители газа были расположены от ГРП примерно на одинаковых расстояниях. Макси­мальное удаление ГРП от проектируемых магистральных газопроводов высокого или среднего давления должно составлять 50 100 метров.

 = 0,0075 + 0,003 • 270 / 100 = 0,0156 (1/м),

e = 2627,33 / 48180 = 0,0545 3/чел.ч ),

R ОПТ = 249 • 10000,081 / [0,01560,245• (270 • 0,0545)0,143] = 822 (м),

V ОПТ = 270 • 0,0545 • 8002 / 5000 = 1883,52 3 / ч),

n ОПТ = 2627,33 / 1883,52 = 1,5 2 (шт),

Откорректируем VКЧАС в соответствие с полученным числом ГРП:

VКЧАС = n ОПТ V ОПТ 3 / ч),

VКЧАС = 2 1883,52 = 3767,04 3 / ч).


9. Типовые схемы ГРП и ГРУ.


Газорегуляторные пункты (ГРП) размещают в отдельно стоящих зда­ниях из кирпича или железобетонных блоков. Размещение ГРП в насе­ленных пунктах регламентируется СНиП [2]. На промышленных предпри­ятиях ГРП размещаются на местах вводов газопроводов на их терри­торию.

Здание ГРП имеет 4 отдельных помещения (рис. 8.1) [10] :

  • основное помещение 2, где размещается все газо-регулирующее обо­рудование;

  • помещение 3 для контрольно-измерительных приборов;

  • помещение 4 для отопительного оборудования с газовым котлом;

  • помещение 1 для вводного и выводного газопровода и ручного регу­лирования давления газа.

В типовом ГРП, изображенном на рис. 8.1 [10] , можно выделить следующие узлы:

  • узел ввода-вывода газа с байпасом 7 для ручного регулирования давления газа после ГРП;

  • узел механической очистки газа с фильтром 1;

  • узел регулирования давления газа с регулятором 2 и предохранительно-запорным клапаном 3;

  • узел измерения расхода газа с диафрагмой 6 или счётчиком газа.

В помещении для контрольно-измерительных приборов размещаются са­мопишущие манометры, измеряющие давление газа до и после ГРП, рас­ходомер газа, дифманометр, измеряющий перепад давления на фильтре. В основном помещении ГРП устанавливаются показывающие манометры, измеряющие давление газа до и после ГРП; термометры расширения, измеряющие температуру газа на вводе газа в ГРП и после узла из­мерения расхода газа.

Аксонометрическая схема газопроводов ГРП изображена на рис. 8.2. [ ] На схеме в условных изображениях в соответствии с ГОСТ 21.609-83 показаны трубопроводы, запорная арматура, регуляторы (2), предохрани­тельно-запорные клапана (З), фильтр (1), гидроэатвор (5), свечи для сброса газа в атмосферу (10,9,8), диафрагма (6) и байпас (7).

Газопровод от городской сети среднего или высокого давления подходит к ГРП под землёй. Пройдя фундамент, газопровод поднимается в помещение (1). Аналогично отводится газ из ГРП. На вводе и выводе газа в ГРП на газопроводе устанавливается изолирующие фланцы (11).

Газ высокого иди среднего давления проходит в ГРП очистку от механических примесей в фильтре (1). После фильтра газ направляет­ся к линии регулирования. Здесь давление газа снижается до необхо­димого и поддерживается постоянным с помощью регулятора (2). Предох­ранительно-запорный клапан (3) закрывает линию регулирования в слу­чаях повышения и понижения давления газа после регулятора более допустимых пределов. Верхний предел срабатывания клапана составля­ет 120 % от давления, поддерживаемого регулятором давления. Нижний предел настройки клапана для газопроводов низкого давления составляет 300 - 3000 Па; для газопроводов среднего давления - 0,003 - 0,03 МПа.

Предохранительно-сбросной клапан (ПСК) (4) защищает газовую сеть после ГРП от кратковременного повышения давления в пределах 110 % от величины давления, поддерживаемого регулятором давления. При срабатывании ПСК избыток газа выбрасывается в атмосферу через га­зопровод безопасности (9).

В помещении ГРП необходимо поддерживать положительную темпера­туру воздуха не менее 10 °С. Для этого ГРП оборудуется местной системой отопления или подключается к системе отопления одного из ближайших зданий.

Для вентиляции ГРП на крыше устанавливается дефлектор, обеспечивающий трёхкратный воздухообмен в основном помещении ГРП. Входная дверь в основное помещение ГРП в нижней её части должна иметь щели для прохода воздуха.

Освещение ГРП чаще всего выполняется наружным путем установки источников направленного света на окнах ГРП. Можно выполнять осве­щение ГРП во взрывобезопасном исполнении. В любом случае включение освещения ГРП должно осуществляться снаружи.

Возле здания ГРП оборудуется грозозащита и заземляющий контур.


9.2 Газорегуляторные установки.


Газорегуляторные установки (ГРУ) по своим задачам и принципу работы не отличаются от ГРП. Основное их отличие от ГРП заключает­ся в том, что ГРУ можно размещать непосредственно в тех помещени­ях, где используется газ, или где-то рядом, обеспечивая свободный доступ к ГРУ. Отдельных зданий для ГРУ не строят. ГРУ обносят заг­радительной сеткой и вывешивают возле ее предупредительные плака­ты. ГРУ, как правило, сооружаются в производственных цехах, в котель­ных, у коммунально-бытовых потребителей газа. ГРУ могут выполняться в металлических шкафах, которые укрепляются на наружных стенах производственных зданий. Правила размещения ГРУ регламентируются СНиП [2].

На рис. 8.3 [10] изображена аксонометрическая схема типового ГРУ. Зде­сь приняты следующие обозначения :

1. фильтр для механической очистки газа;

2. стальные задвижки;

3. предохранительно-запорный клапан;

4. регулятор давления;

5.6.чугунные задвижки;

7. предохранительно-сбросной клапан;

8. расходомер газа;

9. самопишущие манометры;

10. показывающие манометры;

11. дифференциальный манометр на фильтре;

12. термометры расширения;

13. футляры;

14. диафрагма;

15. стальные вентили;

16. трехходовые краны;

17. пробковые краны на импульсных линиях;

18.19. пробковые краны.

К помещению, где расположено ГРУ, с точки зрения вентиляции и освещения предъявляются те же требования, что и для ГРП.


10. Выбор оборудования газорегуляторных пунктов и установок.


Выбор оборудования ГРП и ГРУ начинается с определения типа регулятора давления газа. После выбора регулятора давления определяются типы предохранительно-запорных и предохранительно-сбросных клапа­нов. Далее подбирается фильтр для очистки газа, а затем запорная арматура и контрольно-измерительные приборы.


10.1 Выбор регулятора давления.


Регулятор давления должен обеспечивать пропуск через ГРП необходимого кол-во газа и поддерживать постоянное давление его независимо от расхода.

Расчётное уравнение для определения пропускной способности регулятора давления выбираются в зависимости от характера истечения газа через регулирующий орган.

При докритическом истечении, когда скорость газа при проходе через клапан регулятора не превышает скорость звука, расчётное уравнение записывается в виде

VР = 5260 K V  P P1 / О T Z

При сверх критическом давлении, когда скорость газа в клапане регулятора давления превышает скорость звука, расчётное уравнение имеет вид:

VР = 5260 K V КР P1 P / P1) КР/ О T Z

В формулах:

K V - коэффициент пропускной способности регулятора давления;

- коэффициент, учитывающий неточность исходной модели для уравнений;

= 1 - 0,46 (P / P1)

КР = 1 - 0,46 (P / P1) КР

P - перепад давлений в линии регулирования, МПа:

P = P1 - P2 - P КР, (МПа),

где P1 - абсолютное давление газа перед ГРП или ГРУ, МПа;

P2 - абсолютное давление газа после ГРП или ГРУ, МПа;

P 1 = 0,15 + 0,1 = 0,25 (МПа),

P 2 = 0,005 + 0,1 = 0,105 (МПа),

P - потери давлении газа в линии регулирования, обычно равные 0,007 МПа;

P / P1) КР = 0,5

КР = 1 - 0,46 • 0,5 = 0,77

О = 0,73 -плотность газа при нормальном давлении, кг/м3;

Т - абсолютная температура газа равная 283 К;

Z - коэффициент, учитывающий отклонение свойств газа от свойств идеального газа (при Р1 МПа Z = 1).

Расчётный расход VР должен быть больше оптимального расхода газа через ГРП на 15,20%, то есть:

VР = (1,15 1,2) V ОПТ3/ч.),

VР = 1,2 • 1883,52 = 2260,224 3/ч.),

Определить режим истечения газа через клапан регулятора можно по соотношению

Р2 / Р1 = 0,105 / 0,25 = 0,42

Если Р2 / Р1 то течение газа будет докритическим и поэтому следует применять уравнение первое.

Так как Р2 / Р1 то течение газа будет сверхкритическим и поэтому следует применять уравнение второе.

Из вышеуказанных уравнений для определения типа регулятора определяем его коэффициент пропускной способности K V.

K V = V Р / [ 5260 КР P1 P / P1) КР/ О T Z)]

K V = 2260,224 / [ 5260 • • 0,25 • /  • 283 • 1)] = 45,37

Определив K V по таблице 9.1 [ ] выбираем тип регулятора с K V ближайшим большим значением, чем получен по расчёту.

По расчёту получен K V = 45,37 Ближайший К V в таблице равен 50 и относится к регулятору РДУ-50. Следовательно, этот регулятор следует установить в ГРП.


10.2 Выбор предохранительно-запорного клапана.


Промышленность выпускает два типа ПЗК: ПКН и ПКВ. Первый следует применять в случаях, когда после ГРП или ГРУ поддерживается низкое давление, второй - среднее. Габариты и тип клапана определяются типом регулятора давления. ПЗК обычно выбирают с таким же условным диаметром, как и регулятор.

Определен тип регулятора РДУК-50. Этот регулятор имеет условный диаметр 50 мм. Следовательно, ПЗК будет или ПКН-50.


10.3 Выбор предохранительно-сбросного клапана.


Предохранительно-сбросной клапан подбирается по пропускной спо­собности регулятора давления. Пропускная способность ПСК должна составлять не менее 10 % от пропускной способности регулятора давления или не менее пропускной способности наибольшего из клапанов. Выбираем ПСК-50Н/0,05.


10.4 Выбор фильтра.


Задачей фильтра в ГРП или ГРУ является отчистка от механических примесей. При этом фильтр должен пропускать весь газовый поток, не превышая допустимую потерю давления на себе в размере 10000 Па.

Промышленность выпускает два вида газовых фильтров: кассетные с литым корпусом типа ФВ-100 и ФВ-200; кассетные со сварным корпусом типа ФГ7-50-6; ФГ9-50-12; ФГ15-100-6; ФГ19-10-12; ФГ36-200-6; ФГ46-200-12; ФГ80-300-6; ФГ100-300-12.

Первый тип фильтров предназначен для небольших до 3800 м3/ч расходов газа. Второй тип фильтров предназначен для пропуска больших расходов газа. Число после ФГ означает пропускную способность фильтра в тысячах кубических метров в час.

Для подбора фильтра необходимо определить перепад давления газа на нем при расчетном расходе газа через ГРП или ГРУ.

Для фильтров этот перепад давления определяют по формуле:

Р = 0,1 Р ГР ( V Р / V ГР)2 О / Р1 (Па),

где Р ГР - паспортное значение перепада давления газа на фильтре, Па;

V ГР - паспортное значение пропускной способности фильтра, м3/ч;

О - плотность газа при нормальных условиях, кг/м3;

Р1 - абсолютное давление газа перед фильтром, МПа;

VР - расчетный расход газа через ГРП иди ГРУ, м3/ч.

Р ГР = 10000 (Па), V ГР = 7000 3/ч), О = 0,73 (кг/м3),

За исходный возьмем фильтр ФГ 7 - 50 - 6

Р = 0,1 • 10000 • (2260,224 / 7000)2 • 0,73 / 0,25 = 304,43 (Па),

Перепад для фильтра ГРП не превышает допустимого значения 10000 Па , следовательно

выбран фильтр ФГ 7 - 50 - 6.


10.5 Выбор запорной арматуры.


Запорная арматура (задвижки, вентили, пробковые краны), применяются в ГРП и ГРУ должна быть рассчитана на газовую среду. Главными критериями при выборе запорной арматуры являются условный диаметр DУ и исполнительное давление РУ.

Задвижки применяются как с выдвижными, так и с не выдвижными шпинделем. Первые предпочтительней для надземной установки, вторые - для подземной.

Вентили применяют в тех случаях, когда повышенной потерей давления можно пренебречь, например, на импульсных линиях.

Пробковые краны имеют значительно меньшее гидравлическое сопротивление, чем вентили. Их различают по затяжке конической пробки на натяжные и сальниковые, а по методу присоединения к трубам - на муфтовые и фланцевые.

Материалом для изготовления запорной арматуры служат: углеродистая сталь, легированная сталь, серый и ковкий чугун, латунь и бронза.

Запорная арматура из серого чугуна применяется при рабочем давлении газа не более 0,6 МПа. Стальная, латунная и бронзовая при давлении до 1,6 МПа. Рабочая температура для чугунной и бронзовой арматуры должна быть не ниже -35 С, для стальной не менее -40 С.

На входе газа в ГРП следует применять стальную арматуру, или арматуру из ковкого чугуна. На выходе из ГРП при низком давлении можно применять арматуру из серого чугуна. Она дешевле стальной.

Условный диаметр задвижек в ГРП должен соответствовать диаметру газопроводов на входе и выходе газа. Условный диаметр вентилей и кранов на импульсных линиях ГРП или ГРУ рекомендуется выбирать равным 20 мм или 15 мм.


11. Конструктивные элементы газопроводов.


На газопроводах применяются следующие конструктивные элементы:

  1. трубы;

  2. запорно-регулирующая арматура;

  3. линзовые компенсаторы;

  4. сборники конденсата;

  5. футляры;

  6. колодцы;

  7. опоры и кронштейны для наружных газопроводов;

  8. системы защиты подземных газопроводов от коррозии;

  9. контрольные пункты для измерения потенциала газопроводов относи­тельно грунта и определения утечек газа.

Трубы составляют основную часть газопроводов, по ним транспортируется газ к потребителям. Все соединения труб на газопроводах выполняются только сварными. Фланцевые соединения допускаются только местах установки запорно-регулирующей арматуры.


11.1 Трубы.

Для строительства систем газоснабжения следует применять стальные прямошовные, спиральношовные сварные и бесшовные трубы изготавливаемые из хорошо свариваемых сталей, содержащих не более 0,25 % углерода, 0,056 % серы и 0,046 % фосфора. Для газопроводов, например, применяется сталь углеродистая обыкновенного качества, спокойная, группы В ГОСТ 14637-89 и ГОСТ 16523-89 не ниже второй категории марок Ст. 2, Ст. 3, а также Ст. 4 при содержании в ней углерода не более 0,25 %.

А - нормирование (гарантия) механических свойств;

Б - нормирование (гарантия) химического состава;

В - нормирование (гарантия) химического состава и механических свойств;

Г - нормирование (гарантия) химического состава и механических свойств на термообработанных образцах;

Д - без нормируемых показателей химического состава и механических свойств.

Согласно [2] рекомендуется применять трубы следующих групп пос­тавки:

- при расчетной температуре наружного воздуха до - 40 °С - группу В;

- при температуре - 40 °С и ниже - группы В и Г.

При выборе труб для строительства газопроводов следует применять, как правило, трубы, изготовленные из более дешевой углеродистой стали по ГОСТ 380-88 или ГОСТ 1050-88.


11.2 Детали газопроводов.


К деталям газопроводов относятся: отводы, переходы, тройники, заглушки.

Отводы устанавливаются в местах поворотов газопроводов на углы 90° , 60° или 45°.

Переходы устанавливаются в местах изменения диаметров газопрово­дов. На чертежах и схемах их изображают следующим образом

Тройники служат для закрытия и герметизации торцевых частей тупи­ковых участков газопроводов. Их применяют в местах подключения к газопроводам потребителей.

Заглушки служат для закрытия и герметизации торцевых частей тупиковых участков газопроводов. Заглушки представляют собой круг со­ответствующего диаметра, выполненный из стали тех же марок, что и газопровод. Обозначение деталей газопроводов приводятся в приложении 4 [10].


12. Гидравлический расчёт газопроводов.


Основная задача гидравлических расчетов заключается в том, чтобы определить диаметры газопроводов. С точки зрения методов гидравли­ческие расчеты газопроводов можно разделить на следующие типы:

  • расчет кольцевых сетей высокого и среднего давления;

  • расчет тупиковых сетей высокого и среднего давления;

  • расчет многокольцевых сетей низкого давления;

  • расчет тупиковых сетей низкого давления.

Для проведения гидравлических расчётов необходимо иметь следующие исходные данные:

  • расчетную схему газопровода с указанием на ней номеров и длин участков;

  • часовые расходы газа у всех потребителей, подключенных к данной сети;

  • допустимые перепады давления газа в сети.

Расчетная схема газопровода составляется в упрощенном виде по плану газифицируемого района. Все участки газопроводов как бы вып­рямляются и указываются их полные длины со всеми изгибами и поворотами. Точки расположения потребителей газа на плаке определяются местами расположения соответствующих ГРП или ГРУ.


12.1 Гидравлический расчет кольцевых сетей высокого и среднего давления.


Гидравлический режим работы газопроводов высокого и среднего давления назначается из условий максимального газопотребления.

Расчёт подобных сетей состоит из трёх этапов:

  • расчет в аварийных режимах;

  • расчет при нормальном потокораспределении ;

  • расчёт ответвлений от кольцевого газопровода.


ГРП


L=1,68км

(17)

L=0,37км

(16)

L=0,07км

(14)

L=0,66км

(15)

L=0,07км

(18)



0

14

15

16

17


(32)

L=0,08

(33)

L=0,08

(34)

L=0,06

(35)

L=0,05


(1)

L=0,2км


V14

19,525

V15

26,78

V16

85,235

V17

433,01



1

13

(19)

L=0,12

(31)

L=0,17

V1

26,78

V13

3,543



(2)

L=0,21км

(13)

L=0,43км



12

(30)

L=0,07

V12

85,235



2

(20)

L=0,11

(12)

L=0,23км

V2

1883,52



11

(29)

L=0,06

(3)

L=0,14км

V11

15208,94


(11)

L=0,04км


3

(21)

L=0,08

V3

3,543



10

(28)

L=0,15

V10

26,78


(4)

L=0,41км


(10)

L=0,11км


4

(22)

L=0,16

V4

1131,22


9

(27)

L=0,15

V9

1883,52



V5

26,78

V6

19,525

V7

433,01

V8

3,543



(23)

L=0,04

(24)

L=0,12

(25)

L=0,07

(26)

L=0,1


5

6

7

8


(5)

L=0,83км

(6)

L=0,14км

(7)

L=0,16км

(8)

L=0,11км

(9)

L=0,2км




рис.2. Расчётная схема кольцевого газопровода высокого давления.



Расчетная схема газопровода представлена на рис. 2 . Длины от­дельных участков указаны в метрах. Номера расчетных участков указа­ны числами в кружках. Расход газа отдельными потребителями обозначен буквой V и имеет размерность м3/ч. Места изменения расхода газа на кольце обозначены цифрами 0, 1, 2, ..... , и т. д.. Источник питания газом (ГРС) подключен к точке 0.

Газопровод высокого давления имеет в начальной точке 0 избыточ­ное давление газа Р Н =0,6 МПа. Конечное давление газа Р К = 0,15 МПа. Это давление должно поддерживаться у всех потребителей, подключен­ных к данному кольцу, одинаковым независимо от места их расположе­ния.

В расчетах используется абсолютное давление газа, поэтому расчет­ные Р Н =0,7 МПа и РК=0,25 МПа. Длины участков переведены в километры.

Для начало расчёта определяем среднюю удельную разность квадратов давлений:

А СР = (Р2н - Р2к) / 1,1 l i

где l i - сумма длин всех участков по расчётному направлению, км.

Множитель 1,1 означает искусственное увеличение длинны газопровода для компенсации различных местных сопротивлений (повороты, задвижки, компенсаторы и т. п.).

Далее, используя среднее значение А СР и расчетный расход газа на соответствующем участке, по номограмме рис. 11.2 [10] определяем диаметр газопровода и по нему, используя ту же номограмму, уточняем значе­ние А для выбранного стандартного диаметра газопровода. Затем по уточненному значению А и расчетной длине, определяем точное значе­ние разности Р2н - Р2к на участке.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: