Xreferat.com » Рефераты по математике » Кручение стержней

Кручение стержней

ОГЛАВЛЕНИЕ


Введение

Глава 1. Кручение стержней имеющих в сечении правильный многоугольник

§1.1 Кручение призматических стержней

§1.2 Кручение стержней прямоугольного сечения

§1.3 Мембранная аналогия

§1.4 Кручение тонкостенных стержней открытого профиля

Глава 2. Кручение стержней имеющих в сечении круг и эллипс

§2.1 Кручение стержней круглого и эллиптического сечений

§2.2 Кручение тонкостенных труб

§2.3 Кручение круглых валов переменного диаметра

Глава 3. Кручение призматических и цилиндрических стержней

§3.1 Чистое кручение стержней постоянного сечения

§3.2 Чистое кручение круглых стержней (валов) переменного сечения

Глава 4. Задачи

Заключение

Литература


ВВЕДЕНИЕ


Данная выпускная квалификационная работа состоит из четырех глав. В первой главе излагается прямой, обратный и полуобратный методы, применяемые при решении задач о кручении стержня прямоугольного сечения. Исследованы приближенные методы решения задач о кручении более сложных сечений.

Вторая глава посвящена изучению кручения стержней в сечении имеющих форму круга или эллипса. Применяют метод перехода к полярным координатам.

В третьей главе исследуется кручение призматических и цилиндрических стержней, исследуются общие построения данной теории и их различия.

В четвертой главе изучают теоретическое применение к решению задач.


Глава 1. КРУЧЕНИЕ СТЕРЖНЕЙ, ИМЕЮЩИХ В СЕЧЕНИИ ПРАВИЛЬНЫЙ МНОГОУГОЛЬНИК


§1.1 Кручение призматических стержней


Прямой метод решения задач теории упругости, заключающийся в интегрировании основных уравнений теории упругости совместно с заданными граничными условиями, не всегда возможен. Для многих задач удобно применять так называемые обратный и полуобратный методы. При пользовании обратным методом выясняют, каким граничным условиям соответствуют некоторые функции, удовлетворяющие дифференциальным уравнениям. Таким путем можно получить ряд полезных результатов. Полуобратный метод, впервые предложенный Сен-Венаном, состоит в том, что делают некоторые допущения в отношении напряжений или перемещений. При этом дифференциальные уравнения настолько упрощаются, что решение их не представляет особых математических трудностей. Принимая те или иные допущения, мы, как правило, ограничиваем общность полученного решения; но обычно их можно формулировать таким образом, чтобы все же получить решение частных задач. Например, в рассматриваемой ниже задаче о кручении призматического стержня мы будем задаваться определенными функциями для перемещений и, v, w, сводя, таким образом, основные уравнения к одному дифференциальному уравнению. Но при таких допущениях мы можем найти решение задачи о кручении стержней только постоянного сечения; решения же для стержней, не являющихся призматическими, получить этим путем нельзя. Полуобратный метод является одним из самых эффективных методов решения задач теории упругости.


Кручение стержней

рис. 1


Предположим, что один конец стержня призматического сечения, длины L, закреплен в плоскости ху, а на другой конец действует пара, вектор-момент который направлен вдоль оси z (рис. 1). Мы полагаем, что закрепленный конец не может вращаться, но что оба конца могут свободно перемещаться друг относительно друга в направлении z. Под действием пары стержень будет закручиваться, причем образующие цилиндра будут превращаться в винтовые линии. Угол поворота любого поперечного сечения зависит от расстояния, на котором находится это сечение от закрепленного конца. При малой деформации можно считать, что угол закручивания Кручение стержней пропорционален расстоянию между сечением и закрепленным концом. Таким образом,


Кручение стержнейz, (1)


Кручение стержней

рис. 2

где Кручение стержней угол закручивания на единицу длины. Будем считать угол закручивания Кручение стержней малым. Рассмотрим сечение стержня, которое находится на расстоянии z от закрепленного конца. Точка Р с координатами x, y, z в результате деформации перемещается в точку Р’(x+u, y+v, z+w). На рисунке 2 показана точка Р’1, являющаяся проекцией Р’ на плоскость xy.

Предположим, что в плоскости xy точка Р перемещается в Р’1 при повороте на угол закручивания Кручение стержней, причем ОРКручение стержнейОР’1= r. Если угол Кручение стержней мал, то cosКручение стержней Кручение стержней1 и sinКручение стержней . Следовательно,Кручение стержней


Кручение стержней


Подставляя значение Кручение стержней (1), получаем


Кручение стержней (2)


таким оказывается закон изменения u и v. В отношении w не будем пока делать никаких допущений, кроме того, что w зависит только от x и y и не зависит от z . Следовательно, можно записать


Кручение стержней (3)


где Кручение стержней- некоторая функция от x и y .Так как w определяет искажение (депланацию) торцевых сечений, то функцию Кручение стержней можно назвать функцией депланацией. Необходимо выяснить, будут ли отвечать принятые выражения для перемещений, вместе с неизвестной еще функцией Кручение стержней, напряженному состоянию, удовлетворяющему заданным граничным условиям. Эти условия в данном случае состоят в том, что на обоих торцах должны действовать, только крутящие моменты и что боковая поверхность стержня свободна от сил.

Пользуясь приведенными выше выражениями для перемещений, находим:


Кручение стержней (4)


Из закона Гука следует:


Кручение стержней (5)


Подставим эти значения в уравнения равновесия, которые будут выполняться, в случае, если функция Кручение стержней удовлетворяет уравнению


Кручение стержней


для всех точек поперечного сечения R стержня, здесь


Кручение стержней


- оператор Лапласа.

Обратимся к граничным условиям. Так как


Кручение стержней


на боковой поверхности стержня, то уравнений примет следующий вид:


Кручение стержней на контуре S,


где S - контурная линия поперечного сечения стержня.

Покажем, далее, что на двух других граничных поверхностях, а именно, на торцах стержня, определяемых плоскостями z=0 и z=L, напряжение (5) сводятся к скручивающей паре, и результирующие силы отсутствуют. Результирующая сила в направлении x равна


Кручение стержнейКручение стержней; (8)


это выражение можно привести к виду


Кручение стержней. (9)


При получении уравнения (9) были использованы соотношения


Кручение стержней


Кручение стержней

рис. 3


здесь принято


Кручение стержней


в соответствии с уравнением (6).

Пусть f является некоторой функцией x и y; тогда можно выписать равенства (рис. 3):


Кручение стержней


где f1 и f2 - значение функции f на правой и левой частях контура. Выполним интегрирование по y для контурной кривой в границах от y=yA до y=yB. Если мы будем вести интегрирование функции f по контуру в направлении против часовой стрелки, то для правой части контура приращение dy - положительно, а для левой - отрицательно. В результате каждая из величин f1dy и (- f2dy) окажется положительной, и, следовательно,


Кручение стержней. (10)


Аналогично,


Кручение стержней (11)


Пользуясь формулами (10) и (11), придадим выражению (9) вид:


Кручение стержней. (12)


Будем считать положительными направления вдоль нормали N во внешнюю сторону и вдоль контура – против часовой стрелки; тогда согласно рис.3,б получим


Кручение стержней (13)


Равенство (12) принимает вид


Кручение стержней


при этом выражение


Кручение стержней


обращается в нуль на контуре S в соответствии с уравнением (7). Мы пришли, таким образом, к равенству


Кручение стержней


Таким же путем можно показать, что составляющая результирующей силы вдоль оси также равна нулю:


Кручение стержней


Следовательно, результирующие силы по торцам цилиндра обращаются в нуль.

Результирующий крутящий момент T по торцам стержня, отвечающий принятому распределению напряжений, равен:


Кручение стержней (14)


Интеграл, фигурирующий в выражении (14), зависит от функции кручения Кручение стержней и, следовательно, от вида поперечного сечения R стержня. Вводя обозначение


Кручение стержней (15)


Получим


Кручение стержней (16)


где J – постоянная кручения. Уравнение (16) показывает, что крутящий момент пропорционален углу закручивания на единицу длины, так что произведение является мерой жесткости стержня, подвергаемого кручению; величина эта называется крутильной жесткостью стержня.


§1.2 Кручение стержней прямоугольного сечения


Пусть поперечное сечение стержня представляет собой прямоугольник с центром в начале координат и со сторонами 2a и 2b, направленными параллельно координатным осям, как показано на рис.7. Пользуемся полученными ранее уравнениями: для всей прямоугольной области


Кручение стержней

рис.7


Кручение стержней (6)


и по контору


Кручение стержней (7)


На контурных линиях AB и CD, где x=Кручение стержнейa, будет l=Кручение стержней1 и m=0 , а на линиях BC и AD имеем l=0 и m=Кручение стержней1 . Условие на контуре (7) можно переписать в следующем виде:


Кручение стержней (31)


Этим условиям можно придать более удобную форму, вводя новую функцию Кручение стержней так, что


Кручение стержней. (32)


Легко показать, что для новой функции Кручение стержней основное уравнение по всей прямоугольной области будет иметь вид:


Кручение стержней; (33)


условия на контуре будут следующими:


Кручение стержней при Кручение стержней (34)

Кручение стержней при Кручение стержней (35)


Примем решение уравнения (33) в виде бесконечного ряда


Кручение стержней (36)


каждый член, которого удовлетворяет дифференциальному уравнению; здесь Xn(x) и Yn(y) – функции соответственно только x и y. Очевидно, если решение для Кручение стержней нельзя выразить в форме ряда (36), то мы не сможем найти решение для функции Xn и Yn , удовлетворяющее граничным условиям.

Подставляя Xn(x), Yn(y) в уравнение (33) и обозначая производные штрихами, находим


Кручение стержней


Или


Кручение стержней


Так как левая часть полученного уравнения является функцией только от x, а правая зависит только от y, то уравнение может быть удовлетворено лишь в том случае, если обе его части равны постоянной величине; обозначим ее через (Кручение стержней) (постоянную берем со знаком минус, так как иначе граничные условия не будут удовлетворяться). Таким образом, мы получаем два обыкновенных дифференциальных уравнения:


Кручение стержней


Эти дифференциальные уравнения легко решить с помощью известных методов интегрирования обыкновенных дифференциальных уравнений с постоянными коэффициентами. Решение их будут следующими:


Кручение стержней (37)

Кручение стержней (38)


Рассмотрим теперь условие на контуре (35). Во-первых, можно установить, что выражение


Кручение стержней


должно иметь одно и то же значение при y=b и y=-b. Это условие может быть выполнено, если производные Кручение стержней являются симметричными функциям от y. Во-вторых, при Кручение стержней будем иметь


Кручение стержней


Это условие удовлетворяется, если Xn(x) являются антисимметричными функциями относительно x. Исходя из этих соображений, находим, что c2=c4=0.Условие (34) будет выполнено, если Кручение стержней, или

Кручение стержней


Отсюда находим


Кручение стержней.


Поскольку c1 и c2 – произвольные постоянные, функцию можно записать в следующем виде:


Кручение стержней (39)


Где


Кручение стержней;


постоянные An следует определить таким образом, чтобы удовлетворялось граничное условие (35).

Дифференцируя функцию Кручение стержней по y и подставляя Кручение стержней из уравнения (35) получаем


Кручение стержней; (40)


здесь для упрощения записи введено обозначение:


Кручение стержней.


Коэффициенты An можно определить, пользуясь схемой, применяемой при разложении функции в ряд Фурье. Умножим обе части уравнения (40) на Кручение стержней и проинтегрируем все члены по x. Учитывая соотношения


Кручение стержней


получим


Кручение стержней при Кручение стержней

= a при m=n

и Кручение стержней


Вычислив значения интегралов в этом выражении, найдем


Кручение стержней


или


Кручение стержней


следовательно, решение будет иметь вид:

Кручение стержней (41)


Постоянную кручения J можно определить по формуле (15):


Кручение стержней


Принимая во внимание равенство


Кручение стержней


приходим к формуле для J:


Кручение стержней (42)


В таблице 1.1 даны значения K, соответствующие разным величинам отношения b/a .


Таблица 1.1

b/a K K1 K2

1,0

1,2

1,5

2,0

2,5

3,0

4,0

5,0

10,0

Кручение стержней

2,250

2,656

3,136

3,664

3,984

4,208

4,496

4,656

4,992

5,328

1,350

1,518

1,696

1,860

1,936

1,970

1,994

1,998

2,000

2,000

0,600

0,571

0,541

0,508

0,484

0,468

0,443

0,430

0,401

0,375


Ряд (42) можно записать в виде


Кручение стержней


Мы замечаем, что сумма Кручение стержней меньше суммы Кручение стержней так как Кручение стержней при Кручение стержней. Следовательно, первый член ряда дает значение суммы с точностью до 0,5%, и для практических расчетов можно пользоваться приближенной формулой


Кручение стержней (43)


После некоторых выкладок находим следующие формулы для касательных напряжений:


Кручение стержней (44)


Можно показать, что если b>a, то максимальные касательные напряжения имеют место посередине длинных сторон прямоугольника, при Кручение стержней. Подставляя в уравнение (44) значения x=a и y=0, находим


Кручение стержней


и


Кручение стержней (45)


Кручение стержней

рис.8


Бесконечный ряд в правой части уравнения, которой мы обозначим через K1/2, сходится очень быстро при b>a , и вычисление величины Кручение стержней с достаточной точностью для любого отношения b/a не представляет трудностей. Значение K1, соответствующие различным величинам b/a , включены в табл. 1.1. Подставляя выражения

постоянной кручения J из уравнения (42) в уравнение (45), получаем


Кручение стержней (46)


где K2 - второй числовой множитель, значения которого также даны в табл. 1.1.

Горизонтали поверхности, для которых Кручение стержней, могут быть легко определены из уравнения для функции Кручение стержней. Для стержня квадратного сечения, т.е. при a=b , горизонтали на рис.8; здесь сплошные линии соответствуют положительным значениям w, а пунктирные – отрицательным, по правилу знаков.


§1.3 Мембранная аналогия


Из примера, разобранного в предыдущем параграфе, становится очевидным, что задачи о кручении стержня более сложной формы поперечного сечения может оказаться весьма трудным. Для приближенного решения задач о кручения стержней различных сечений, часто встречающихся в технике, весьма эффективной оказались так называемая мембранная аналогия. Она основана на математической аналогии между задачами о кручении и о деформации упругой натянутой мембраны, подверженной равномерному поперечному давлению.


Кручение стержней

рис.9


Пусть тонкая однородная мембрана (рис.9) имеет постоянное натяжение и закреплена по контуру, который ограничивается кривой, лежащей в

плоскости xy. Если мембрана подвергается равномерному поперечному давлению p, то точки её срединной поверхности получат перемещения z, зависящие от x и y. Рассмотрим условие равновесия бесконечного малого элемента ABCD мембраны после деформации. Обозначим через F постоянное натяжение, приходящееся на единицу длины мембраны. Усилие F, действующее по стороне AD, наклонено к оси под углом Кручение стержней. Так как деформации малы, то можно принять Кручение стержней. Прогиб z меняется от точки к точке, поэтому усилие F для стороны BC наклонено под углом


Кручение стержней.


Таким же путем находим, что углы наклона растягивающих усилий, приложенных по сторонам AB и CD, равны соответственно Кручение стержней и Кручение стержней.

Складывая составляющие вдоль оси сил, действующих по четырем сторонам, получаем


Кручение стержней


отсюда


Кручение стержней … для области R. (47)


На контуре прогиб мембраны равен нулю. Поэтому граничное условие имеет вид:


z=0 на контуре S. (48)


Вернемся теперь к задаче о кручении. Основное дифференциальное уравнение будет:


Кручение стержней для области R, (6)


а граничное условие имеет вид:


Кручение стержней на контуре S. (7)


На первый взгляд эти соотношения и уравнения (47) и (48) не являются аналогичными. Однако им можно придать идентичную форму, если ввести новую функцию Кручение стержней с помощью соотношений:


Кручение стержней (49)


Из уравнений (49) имеем


Кручение стержней


Дифференциальное уравнение (6) обращается в тождество, так как


Кручение стержней+ Кручение стержней= Кручение стержней Кручение стержней


Таким образом, если функция Кручение стержней определяется по формулам (49), то уравнения равновесия будут удовлетворяться тождественно.

Выражая касательные напряжения Кручение стержней и Кручение стержней через функцию Кручение стержней, получаем


Кручение стержней (50)


Если функция Кручение стержней

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: