Xreferat.com » Рефераты по математике » Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения

Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения

круге R в ряд Тейлора. Сравнивая (14) с рядом (2) находим, что (15)


ТЕОРЕМА 2.

Если однозначная функция f(Z) аналитична вне круга с радиусом r с центром в точке Z0 для всех Z выполняется неравенство r < |Z-Z0 |, то она представляется рядом :

(16)

где h - ориентированная против часовой стрелки окружность радиуса r (сколь угодно большое число). Если обозначить (17) , получим :

(18)


ТЕОРЕМА 3.

Если однозначная функция f(Z) аналитическая в кольце Z< |Z-Z0 | Z , то она раскладывается в сходящийся степенной ряд :

(19)

f1 и f2 можно представить в виде двух рядов :

(20)

(21)

Ряд (19) – ряд Лорана, при этом ряд (20) сходится в круге радиуса R, ряд (21) сходится вне круга радиуса R функции f2(Z). Общая область сходимости ряда – кольцо между r и R.

f1(Z) – правильная часть.

f2(Z) – главная часть ряда Лорана.

Ряд Тейлора – частный случай ряда Лорана при отсутствии главной его части.


Классификация изолированных особых точек. Вычеты.


Определение 1. Особой точкой функции f(Z) определенной в области (замкнутой) G, ограниченной Жордановой кривой, называется точка Z=Z0 G в которой аналитичность функции f1(Z) нарушается. Рабочая точка Z=Z0 функции f(Z), ограниченной в круге |Z-Z0|0. В зависимости от поведения функции f(Z) в окрестности изолированных особых точек последние классифицируются на :

  1. Устранимые особые точки. Ими называются особые точки, для которых существует , где А – конечное число.

  2. Если для особой точки существует предел , то такая особая точка называется полюсом.

  3. Если не существует, то точка Z=Z0 называется существенной особой точкой.

Если С-n=0, то особая точка есть устранимая особая точка.

Пусть f(Z0)=C0 и C-n для всех n=1,2,3,..,m отличного от 0, а для всех n m+1 C-n=0, тогда Z=Z0 будет являться полюсом порядка m.

При m>1 такой полюс будет называться простым.

, если m  , то в этом случае в точке Z=Z0 имеем существенную особенность.

Определение 2. Вычетом функции f(Z) в круге |Z-Z0|0. Вычет существует только для изолированных особых точек. Очевидно, что вычет функции f(z) при Z=Z0 равен первому коэффициенту ряда главной части Лорана :

Если полюс имеет кратность m 1, то для определения вычетов используется формула :

(3)

при m=1 :


Основная теорема о вычетах.

Пусть f(z) аналитическая в области G кроме конечного числа полюсов Z = a1, a2, …, ak. –произвольный, кусочно-гладкий замкнутый контур содержащий внутри себя эти точки и целиком лежащий внутри области G. В этом случае интеграл равен сумме вычетов относительно a1, a2, …, ak и т.д. умноженный на 2i :

(5)


Пример :

Найти вычет

Особые точки : Z1=1, Z2= - 3.

Определим порядок полюсов – все полюсы первого порядка.

Используем формулу (3) :


Интегральные преобразования.


Операционное исчисление и некоторые его приложения.


Пусть задана функция действительного переменного t, которая удовлетворяет условиям :

  1. Функция f(t) кусочно-непрерывная (имеет конечное число точек разрыва первого рода).

  2. Для любого значения параметра t>0 существует M>0 и S00 такие, что выполняется условие : |f(t)|S0t


Рассмотрим функцию f(t)e-pt , где р – комплексное число р = ( а + i b).

(1)

Применим к этому соотношению формулу Эйлера :

Проинтегрировав это равенство получим :

(2)

Оценим левую часть равенства (2) :

А согласно свойству (3) |f(t)| < Me S0t

В случае если a>S0 имеем :

Аналогично можно доказать, что существует и сходится второй интеграл в равенстве (2).

Таким образом при a>S0 интеграл, стоящий в левой части равенства (2) также существует и сходится. Этот интеграл определяет собой функцию от комплексного параметра р :

(3)

Функция F(p) называется изображением функции f(t) по Лапласу, а функция f(t) по отношению к F(p) называется оригиналом.

f(t) F(p), где F(p) – изображение функции f(t) по Лапласу.

- это оператор Лапласа.


Смысл введения интегральных преобразований.

Этот смысл состоит в следующем : с помощью перехода в область изображения удается упростить решение многих задач, в частности свести задачу решения многих задач дифференциального, интегрального и интегро-дифференциального уравнения к решению алгебраических уравнений.

Теорема единственности: если две функции  tиt имеют одно и то же изображение F(p), то эти функции тождественно равны.

Смысл теоремы : если при решении задачи мы определим изображение искомой функции, а затем по изображению нашли оригинал, то на основании теоремы единственности можно утверждать, что найденная функция является решением в области оригинала и причем единственным.

Изображение функций 0(t), sin (t), cos (t).

Определение: называется единичной функцией.

Единичная функция удовлетворяет требованиям, которые должны быть наложены на функцию для существования изображения по Лапласу. Найдем это изображение :

Изображение единичной функции

Рассуждая аналогичным образом получим изображение для функции sin(t) :

интегрируя по частям получим :

т.е.

Аналогично можно доказать, что cos (t) переходит в функцию в области преобразований. Откуда :


Изображение функции с измененным масштабом независимого переменного.

где а – константа.

Таким образом :

и


Свойства линейности изображения.

Теорема : изображение суммы нескольких функций умноженное на постоянные равны сумме изображений этих функций умноженных на те же постоянные.

Если , то , где

Теорема смещения : если функция F(p) это изображение f(t), то F(+p) является изображением функции e-t f(t) (4)

Доказательство :

Применим оператор Лапласа к левой части равенства (4)

Что и требовалось доказать.


Таблица основных изображений:

F(p) f(t) F(p) f(p)

1


Изображение производных.

Теорема. Если , то справедливо выражение :

(1)

Доказательство :

(2)

(3)

Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем :

Что и требовалось доказать.


Пример: Решить дифференциальное уравнение :

Если x(0)=0 и x’(0)=0

Предположим, что x(t) – решение в области оригиналов и , где - решение в области изображений.

Изображающее уравнение :



Теорема о интегрировании оригинала. Пусть находится в области оригиналов, , тогда также оригинал, а его изображение .

Таким образом операции интегрирования в области оригиналов соответствует операция деления в области изображений.


Теорема о интегрировании изображений : Пусть – функция оригинал, которая имеет изображение и также оригинал, а - является сходящимся интегралом, тогда .

Толкование теоремы : операция деления на аргумент в области оригиналов соответствует операции интегрирования в пределах от р до в области изображений.


Понятие о свертке функций. Теорема о свертке.

Пусть заданы две функции a(t) и b(t), удовлетворяющие условиям существования изображения по Лапласу, тогда сверткой таких функций называется следующая функция :

(1)

Свертка обозначается следующим образом :

(1’)

Равенства (1) и (1’) идентичны.

Свертка функции подчиняется переместительному закону.

Доказательство:


Теорема о умножении изображений. Пусть и , тогда произведение изображений представляется сверткой оригиналов .

Доказательство :

Пусть изображение свертки

(1)

Интеграл (1) представляет собой повторный интеграл относительно переменных t и . Изменим порядок интегрирования. Переменные t и входят в выражение симметрично. Замена переменной производится эквивалентно.

Если в последнем интеграле сделать замену переменной, то после преобразований последний интеграл преобразуется в функцию F2(p).

Операция умножения двух функций в пространстве изображений соответствует операции свертки их оригиналов в области оригиналов. Обобщением теоремы о свертке есть теорема Эфроса.

Теорема Эфроса. Пусть функция находится в области оригиналов, , а Ф(р) и q(р) – аналитические функции в области изображений, такие, что , тогда .

В практических вычислениях важную роль играет следствие из теоремы о свертке, наз. интеграл Дюамеля. Пусть все условия теоремы выполняются, тогда

(2)

Соотношение (2) применяется при решении дифференциальных уравнений.


Обратное преобразование Лапласа.

- Это прямое преобразование Лапласа.

Обратное преобразование есть возможность получить функцию-оригинал через известную функцию-изображение :

, где s – некоторая константа.

Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для численного нахождения функции-оригинала по известному изображению.


Теоремы разложения.

Известная методика разложения дробно-рациональных функций на сумму элементарных дробей (1)-(4) может быть представлена в виде двух теорем разложения.

Первая теорема разложения. Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: