Xreferat.com » Рефераты по математике » Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения

Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения

loading="lazy" src="https://xreferat.com/image/54/1306476236_166.gif" alt="" width="2048" height="908" align="ABSMIDDLE" />, k – постоянная, может быть сколь угодно большим числом, , то возможен почленный переход в пространство оригиналов с помощью формулы : .

Вторая теорема разложения. Если изображение представляется дробно-рациональной функцией . Степень числа s меньше степени знаменателя n, знаменатель имеет корни 1, 2, …, n соответствующий кратности k1, k2, …, kn , при этом k1+ k2 +…+ kn = n. В этом случае оригинал функции определяется по формуле :

(3)


Например :


Связь между преобразованиями Фурье и Лапласа.

Преобразование Лапласа имеет вид :

(1)

На f(t) наложены условия :

  1. f(t) определена и непрерывна на всем интервале: (- ; )

  2. f(t) 0 , t (- ;0)

  3. При M, S0 >0 , для всех t > 0 выполняется условие |f(t)|S0t


Если отказаться от условий 2 и 3, и считать, что f(t) принимает произвольное значение при t < 0, то вместо (1) можно рассмотреть следующий интеграл :

(2)

Формула (2) – двустороннее преобразование Лапласа.

Пусть в (1) и (2) p =a + in, где a и n – действительные числа.

Предположим, что Re(p) = a = 0, т.е.

(4)

(5)

  1. и (5) соответственно односторонние и двусторонние преобразования Фурье.


Для существования преобразования Фурье, функция должна удовлетворять условиям :


  1. Должна быть определена на промежутке (- ; ) , непрерывна всюду, за исключением конечного числа точек разрыва первого рода.

  2. Любой конечный промежуток оси t можно разделить на конечное число промежутков, в каждом из которых функция либо кусочно-гладкая, либо кусочно-монотонная.

  3. Функция абсолютно интегрируема : , это условие выполняется, если |f(t)|S0t


Из существования преобразования Лапласа не следует преобразование Фурье. Преобразования Фурье существуют для более узкого класса функций. Преобразования Фурье не существуют для постоянной и ограниченной функции : f(t) = C

Аналогично преобразования Фурье не существуют и для гармоничных функций :

т.к.


Если f(t) = 0 при t>0 и преобразование для этой функции существует, то оно может быть получено из таблицы оригиналов и изображений для преобразования Лапласа путем замены параметра t на iu, но при этом необходимо убедиться, что F(p) не обращается в число справа от мнимой оси.

Если f(t) 0, t<0

(6)


Обозначим

Очевидно, что (6’)

Функция (6) называется спектральной плотностью

В связи с изложенным можно указать два пути отыскания спектральной плотности :

  1. Вычисление интеграла (5)

  2. Использование преобразования Лапласа или Фурье.


Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции.

Функция F(iu) может быть представлена, как комплексная функция действительной переменной

(7)

|F(iu)| - амплитудное значение спектральной плотности, (u) – фазовый угол.

В алгебраической форме : F(iu) = a(u) +ib(u)

(8)

(9)

Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а затем по формулам (8) и (9) определяется амплитудное значение |F(iu)| и фазовый угол (u).


Пример.

Найти спектральную плотность импульса :

откуда , далее


Отыскание спектральной плотности для неабсолютно интегрируемых функций.

Прямое преобразование Фурье для таких функций не существует, существует преобразование Лагранжа.

Прямое преобразование Фурье необходимо :

  1. Для облегчения процесса решения дифференциальных и интегральных уравнений.

  2. Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси.

Введем следующее определение спектральной плотности для неабсолютно интегрируемых функций:

Если для заданной функции y=f(t) существует непрерывное изображение по Лапласу F(p), то спектральной плотностью функции называется изображение функции по Лапласу при p = iu.

Спектральной плотностью F1(iu) неабсолютно интегрируемой функции называется предел от спектральной плотности F2(iu) абсолютно интегрируемой функции.

Похожие рефераты: