Xreferat.com » Рефераты по математике » Двойной интеграл в механике и геометрии

Сколько стоит написать твою работу?

Работа уже оценивается. Ответ придет письмом на почту и смс на телефон.

?Для уточнения нюансов.
Мы не рассылаем рекламу и спам.
Нажимая на кнопку, вы даёте согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, возможно, допущена ошибка в адресе.
В таком случае, пожалуйста, повторите заявку.

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, пожалуйста, повторите заявку.
Хотите промокод на скидку 15%?
Успешно!
Отправить на другой номер
?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа".

Двойной интеграл в механике и геометрии

Министерство общего и профессионального образования Р.Ф.

Иркутский государственный технический университет.

Кафедра высшей математики.

 

 

Реферат.

 

Применение двойных интегралов к задачам механики и геометрии.

 

 

 

 

 

 

 

 

Выполнила: студентка

группы ТЭ-97-1

Мелкоступова С.С.

Проверил преподаватель

кафедры высшей математики

Седых Е.И.

 

 

 

 

 

 

 

 

Иркутск 1998.

 

 

 

 

 

Содержание.

1.Объём цилиндрического тела. Двойной интеграл.

2. Вычисление двойных интегралов.

a) примеры.

3.Приложения двойных интегралов к задачам механики.

а) масса плоской пластинки переменной плотности.

б) статические моменты и центр тяжести пластинки.

в) моменты инерции пластинки.

4.Вычисление площадей и объёмов с помощью двойных интегралов.

а) Объём.

б) Вычисление площади плоской области.

5.Вычисление площади поверхности.

а) Примеры.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Объём цилиндрического тела. Двойной интеграл.

Цилиндрическим телом называется тело, ограниченное плоскостью Oxy, поверхностью, с которой любая прямая, параллельная оси Oz, пересекается не более чем в одной точке, и цилиндрической поверхностью, образующая которой параллельна оси Oz.

Область D, высекаемая в плоскости Oxy цилиндрической поверхностью, называется основанием цилиндрического тела (см. рис.1). В частных случаях боковая цилиндрическая поверхность может и отсутствовать; примером тому служит тело, ограниченное плоскостью Oxy и верхней полусферой Двойной интеграл в механике и геометрии.

Двойной интеграл в механике и геометрии

Рис. 1

Обычно тело можно составить из некоторого числа цилиндрических тел и определить искомый объект как сумму объёмов цилиндрических тел, составляющих это тело.

Прежде всего напомним два принципа, из которых мы исходим при определении объёма тела:

если разбить тело на части, то его объём будет равен сумме объёмов всех частей; объём прямого цилиндра, т.е. цилиндрического тела, ограниченного плоскостью, параллельной плоскости Oxy, равен площади основания, умноженной на высоту тела.

Пусть Двойной интеграл в механике и геометрииесть уравнение поверхности, ограничивающей цилиндрическое тело. Будем считать функцию Двойной интеграл в механике и геометриинепрерывной в области D и сначала предположим, что поверхность целиком лежит над плоскостью Oxy, т.е. чтоДвойной интеграл в механике и геометрии всюду в области D.

Двойной интеграл в механике и геометрии

Рис. 2

Обозначим искомый объем цилиндрического тела через V, Разобьем основание цилиндрического тела - область D - на некоторое число n областей произвольной формы; будем называть их частичными областями. Пронумеровав частичные области в каком-нибудь порядке, обозначим их через Двойной интеграл в механике и геометрии а их площади - через Двойной интеграл в механике и геометрии. Через границу каждой частичной области проведем цилиндрическую поверхность с образующей, параллельной оси Oz. Эти цилиндрические поверхности разрежут поверхность на n кусков, соответствующих n частичным областям. Таким образом, цилиндрическое тело окажется разбитым на n частичных цилиндрических тел (см.рис.2). Выберем в каждой частичной области Двойной интеграл в механике и геометрии произвольную точку Двойной интеграл в механике и геометрии и заменим соответствующее частичное цилиндрическое тело прямым цилиндром с тем же основанием и высотой, равной Двойной интеграл в механике и геометрии. В результате получим n-ступенчатое тело, объем которого равен Двойной интеграл в механике и геометрии

Принимая объем V данного цилиндрического тела приближенно равным объему построенного n-ступенчатого тела, будем считать, что Vn тем точнее выражает V, чем больше n и чем меньше каждая из частичных областей. Переходя к пределу при Двойной интеграл в механике и геометриимы будем требовать, чтобы не только площадь каждой частичной области стремилась к нулю, но чтобы стремились к нулю все ее размеры. Если назвать диаметром области наибольшее расстояние между точками ее границы (Например, диаметр прямоугольника равен его диагонали, диаметр эллипса—его большой оси. Для круга приведенное определение диаметра равносильно обычному.), то высказанное требование будет означать, что каждый из диаметров частичных областей должен стремиться к нулю; при этом сами области будут стягиваться в точку (Если известно только, что площадь области стремится к нулю, то эта область может и не стягиваться в точку. Например, площадь прямоугольника с постоянным основанием и высотой, стремящейся к нулю, стремится к нулю, а прямоугольник стягивается к своему основанию, т. е. к отрезку).

В соответствии со сказанным мы принимаем искомый объем V равным пределу, к которому стремится Vn при стремлении к нулю наибольшего диаметра частичных областей (при этомДвойной интеграл в механике и геометрии):

Двойной интеграл в механике и геометрии

К отысканию предела подобных сумм для функций двух переменных приводят самые разнообразные задачи, а не только задача об объеме.

Рассмотрим этот вопрос в общем виде. Пусть Двойной интеграл в механике и геометрии- любая функция двух переменных (не обязательно положительная), непрерывная в некоторой области D, ограниченной замкнутой линией. Разобьем область D на частичные, как указано выше, выберем в каждой частичной области по произвольной точке Двойной интеграл в механике и геометрии и составим сумму

Двойной интеграл в механике и геометрии (*)

где Двойной интеграл в механике и геометрии - значение функции в точке Двойной интеграл в механике и геометрии; и Двойной интеграл в механике и геометрии, - площадь частичной области.

Сумма (*) называется n-й интегральной суммой для функции Двойной интеграл в механике и геометриив области D, соответствующей данному разбиению этой области на n частичных областей.

Определение. Двойным интегралом от функции Двойной интеграл в механике и геометрии по области D называется предел, к которому стремится n-я интегральная сумма (*) при стремлении к нулю наибольшего диаметра частичных областей.

Записывается это так:

Двойной интеграл в механике и геометрии

Читается: “двойной интеграл от Двойной интеграл в механике и геометрии на Двойной интеграл в механике и геометрии по области D”. Выражение Двойной интеграл в механике и геометрии, показывающее вид суммируемых слагаемых, называется подынтегральным выражением; функция Двойной интеграл в механике и геометрииназывается подынтегральной функцией, Двойной интеграл в механике и геометрии - элементом площади, область D - областью интегрирования, наконец, переменные x и у называются переменными интегрирования.

Таким образом, можно сказать, что объем цилиндрического тела, ограниченного плоскостью Oxy, поверхностью Двойной интеграл в механике и геометрии и цилиндрической поверхностью с образующей, параллельной оси Oz, выражается двойным интегралом от функции Двойной интеграл в механике и геометрии, взятым по области, являющейся основанием цилиндрического тела:

Двойной интеграл в механике и геометрии.

Аналогично теореме существования обыкновенного интеграла имеет место следующая теорема.

Теорема существования двойного интеграла.

Если функция Двойной интеграл в механике и геометриинепрерывна в области D, ограниченной замкнутой линией, то её n-я интегральная сумма стремится к пределу при стремлении к нулю наибольшего диаметра частичных областей. Этот предел, т.е. двойной интеграл Двойной интеграл в механике и геометрии, не зависит от способа разбиения области D на частичные областиДвойной интеграл в механике и геометрии и от выбора в них точек Pi.

Двойной интеграл, разумеется, представляет собой число, зависящее только от подынтегральной функции и области интегрирования и вовсе не зависящее от обозначений переменных интегрирования, так что, например,

Двойной интеграл в механике и геометрии.

Далее мы убедимся а том, что вычисление двойного интеграла может быть произведено посредством двух обыкновенных интегрирований.

 

 

2.Вычисление двойных интегралов.

 

При вычислении двойного интеграла Двойной интеграл в механике и геометрии элемент площади Двойной интеграл в механике и геометрии нам удобно представить в ином виде. Будем разбивать область интегрирования D в плоскости Oxy на частичные области посредством двух систем координатных линий: x=const, y=const. Этими линиями служат прямые, параллельные соответственно оси Oy и оси Ox, а частичными областями - прямоугольники со сторонами, параллельными осям координат. Ясно, что площадь каждой частичной области Двойной интеграл в механике и геометрии будет равна произведению соответствующих Двойной интеграл в механике и геометрии и Двойной интеграл в механике и геометрии. Поэтому элемент площади Двойной интеграл в механике и геометрии мы запишем в виде Двойной интеграл в механике и геометрии т.е. элемент площади в декартовых координатах является произведением дифференциалов независимых переменных. Мы имеем

Двойной интеграл в механике и геометрии. (*)

При вычислении двойного интеграла (*) мы будем опираться на тот факт, что он выражает объём V цилиндрического тела с основанием D, ограниченного поверхностью Двойной интеграл в механике и геометрии. Напомним, что мы уже занимались задачей об объёме тела, когда рассматривали применения определённого интеграла к задачам геометрии и получили формулу

Двойной интеграл в механике и геометрии (**)

Двойной интеграл в механике и геометрии

Рис.3

где S(х) - площадь поперечного сечения тела плоскостью, перпендикулярной к оси абсцисс, а Двойной интеграл в механике и геометрии и Двойной
					</div>
				<!--noindex--><div class=