Xreferat.com » Рефераты по математике » Шпаргалки по математическому анализу для 1-го семестра в МАИ

Шпаргалки по математическому анализу для 1-го семестра в МАИ

что xU(a) => /f(x)-f(a)/< =/f(a)//2 f(x)0 => /f(a)/=f(a)=> xU(a) f(a)/2 c = f(a)/2; 2) f(a)<0 => /f(a)/=-f(a)=> xU(a) f(a)/2>f(x) => c = - f(a)/2 >0 => f(x)<-c чтд

#10{Св-ва непрерывных ф-ций на промежутках} {Т Больцано-Каши} Пусть ф-ция f(x) определена и непрерывеа на отр [a,b] и принимает на его концах значения разных знаков. Тогда существует (.) с принадлежащая интервалу (a,b) в которой f(c)=0 {T2} Пусть ф-ция f(x) определенна и непрерывна на промежутке X([c,d],[c,d),(c,d],(c,d)) и принимает в т. a,b X , af(b)=B, тогда для любого числа С лежащего между А и В c(a,b) / f(с)=С {Док} Рассмотрим [a;b] вспомогат ф-цию (x)=f(x)-C Пусть для определённости A A(x) непрерывна на [a,b] и принимает на его концах разные знаки (a)=f(a)-C=A-C<0; (b)=f(b)-C=B-C>0 по теореме Больцана –Каши с(a,b) | (c)=0 f(c)-C=0 f(c)=C {Т}Ф-ция f(x) непрерывная на отр [a,b] ограничена на этом отрезке.{Т} Ф-ция f(x)-непрерывна на отр[a,b] в некоторых точках этого отрезка минимального и мах значения . [a,b] | f()=minf(x) x[a,b]; f()=maxf(x) x[a,b] f()<=f(x)<=f() x [a,b]. {Равномерная непрерывность} Ф-ция y=f(x) определённая на мн-ве ХRn называется равномерно непрерывной на Х если для >0 =()>0 | x’,x’’X,(x’,x’’)<|f(x’)-f(x’’)|<; Прим f(x) –равномерно непрерывна на всей числовой прямой т.к. для >0 = | x’,x’’R, |x’-x’’|<= {Т Картера} ф-ция непрерывная на огран замкн. мн-ве равномерно непрерывна на нём.

#11 {Т о непрерывн сложн ф-ии } Пусть ф-ия f(x) непрерывна в т. а, a ф-я g(y) непрер в т b =f(a) тогда сущ ф-ия=g(f(x)) в некоторой окр точки а которая непрерывна в точке а {Док-во}Возьмем >0 тогда из непрерывности ф-ии g(у) в т b следует что сущ число >0 так что у /у-b/< так что ф-ия g(y) определена и /g(y)-g(b)/< из непрерывности ф-ии g(x) в т а >0 (х) опред на (а-;а+) и х(а-;а+) => /f(x)-f(a)/<. На интервале (а-;а+) опред сложная ф-ия g(f(x)) причем х(а-;а+) /g(f(x))-g(f(a))/< => по опред непрерывности => g(f(x)) непрерывна вт а чтд.

#12 {Непрерывность обратной ф-ции} Пусть у=f(x) – непрерывна при х [a,b] у[A,B] и пусть она строго возрастает, тогда ф-ция x=(y) также непрерывна {Д} Пусть y0[A,B] x0=(y0), f(x0)=y0 x0(a,b) ; возьмём >0 столь малое, что [x0-,x0+][a,b] Пусть y1=f(x0-) y2=f(x0+) Тогда в силу строго возрастания ф-ции f y(y1,y2)x=(y)(x0-,x0+) тогда для у из [A,B] получаем [a,b] мы получили на нём >0 удовлетв этому условию мы не взяли существ окрестность в (.) 0 (у1,у2) | у(у1,у2) соответсвует (y)(x0-;x0+) Если это утверждение справедливо для мал то оно справедливо для + ф-ция - непрерывна в т. н0 по определению. {} Пусть у0=В х0=(y0)=b Возьмём ) тогда в силу строгого возрастания ф-ции f y(y,y0] x=(y) при отображении пойдёт в а (x0-,x0) ф-ция непрерывна в (.) у0 по определению. аналогично рассматривается случай с убыванием.

#13 {Непрерывность элементарных ф-ций} 1)f(x)=C –непрерывна на всей числовой прямой. f(x)=f(x+h)-f(x)=C-C=0; limh0f(x)=0; 2) f(x)=x; f(x)=x+h-x=h limh0h=0; 3)f(x)=xn, nN –непрерывна на всей числовой прямой, непрерывна как произведение непрерывных ф-ций по индукции xn=xn-1x; 4)f(x)=a0xn+a1xn-1+…+an-непрерывная на всей числовой прямой как сумма конечного числа непрерывных ф-ций; 5)R(x)=P(x)/Q(x)=(a0xn+a1xn-1+…+an)/(b0xm+b1xm-1+..+bm)-непрерывна на всей числовой прямой за исключением тех х, при которых значение знам. обращ в 0 как частное двух непрерывных ф-ций.;6) f(x)=sinx Лемма xR, |sinx|<=|x| Рассмотрим еденичную окружность.(OB,ox)=x; (OB’,ox)=x 0<=x<=/2 т.к. длина отрезка соед две точки не превосходит длины дуги окружности соединяющей теже точки |BB’|<=BAB’ ; |BB’|=2Rsinx; BAB’{дуг}=2Rx 2Rsinx<=2rx; sinx<=x ; Если -/2<=x<0 то |sinx|=-sinx=sin(-x)<=-x=|x| ; 0<-x<=/2 Если |x|>/2 |sinx|<=1</2<|x| {док} что sinx- непрерывна. |f(x)|=|sin(x+h)-sinx|=|2sinh/2cos(x+h/2)|<=2|sinh/2| limh0sinh/2=0 7.f(x)=cosx – непрерывна на всей числовой прямой |f(x)|=|cos|x+h|-cosx|=(2sinh/2sin(x+h/2)<=2|h/2| |h|0; 8)f(x)=ax –непр на всей числ пр,a>=0 f=(ax+h-ax)=ax(ah-1) limh0ax(ah-1)=0; 9)f(x)=logax a>0 a1 непрерывна на (0,+) 10)arcsinx, arccosx – на всей числ. пр.

#14 {Понятие числового ряда} пусть дана числовая последовательность {an} составленный из членов этой последовательности символ. а1+а2+а3…аn назыв беск числовым рядом а1а2-члены этого ряда для обознач исп сумма n 1-ых членов ряда назыв частичной суммой ряда если предел послед частичных сумм конечный то говорят что ряд сход в прот случае расход {Т необход условие сходимости} если ряд аn сход то lim(n)an=0 док-во если ряд an сх то lim(n)Sn=S=lim(n)S(n-1) тогда lim(n)an = lim(n)(Sn-S(n-1)) = lim(n)Sn-lim(n)(Sn-1)=0 т док. {Т Критерий Коши } Для сх-ти ряда (n=1,)an   >0 n такое что при n>n и р Z p>=0 вып неравенство /аn+an+1+an+2+an+p/<; {} (n=1..)1/n( в степ ) >1 сход <1 расход; n<=n Пусть <=1 1/n+1/(n+1)+…+1/(2n-1)>=1/n+1/(n+1)+…+1/(2n-1)>1/2n+1/2n+…+1/2n=n/2n=1/2 для =1/2 при n p=n-1 | вып-ся нер-во |an+…+an+p|> ряд расх. Пусть >1, =2-1>0 расходится частичная сумма ряда S2k=1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+…+(1/(2k-1+1)+,,,+1/(2k)); 1/(n+1)+1/(n+2)+…+1/(2n)>1/n+1/n+1/n=n/n=1/n-1=1/n<1+1/2+1/2/(1-1/2) {S2k} –ограничена сверху т.к. n k |n<2k Sn2k ряд сход.

#15 {Св-ва сходящихся рядов} Если +n=1an сх-ся то сх-ся и любой его остаток, если сходится какой либо остаток то сходися и сам ряд. {Д} Пусть k=m+1+ak-остаток ряда. Обозначим Аn=a1+…+an – n-ая частная сумма ряда (1,+)an A’s=am+1+…+am+s –s-ая частная сумма k=m+1+ak, тогда A’s=Am+s-Am т.к. limnaAn limS+Am+S limS+A’S=lims+Am+S-Am k=m+1+ak cx-cя; Пусть k=m+1+ak сх-ся ; Am+S=AS’+Am; n=m+s An=A’n-m+Am (n>m) Т.к. lims+A’Slimn+A’n=m limn+A=limn+An-n+Am n=1+an ряд сх. {Следствие} Если ряд (1,+)an сх-ся и n=(k=n+1,+)ak limn+n=0 {Док} Пусть An=(1,n)ak, A=limn+An A=An+nn=A-A1 limn+n=A-limn+An=0 {Т} Если ряды (n=1,+)an и (n=1,+)bn сх-ся и -число, то (n=1,+)(an+bn) сх-ся и (n=1,+)an сх-ся {Д} Пусть Аn=(k=1,n)ak, Bn=k=1nbk; A=limn+An, B=limn+Bn; limn+(An+Bn)=A+B, limn+An=A Т.к. An+Bn=(a1+b1)+…+(an+bn)- n-ая частичная сумма ряда (n=1,+)(an+bn) и An=a1+…+an- n-ая частичная сумма ряда то данные ряды сходятся.

#16{T признак сравнения} пусть даны 2 ряда (n=1..)an и (n=1..)bn аn>=0 bn>=0 (n=1,2,3…) и no такое что при n>no аn расход ряда Bn и наоборот. {Док-во} пусть ряд Вn сход (к=no+1..)bk сход Аn = a(no+1)+…+a(no+m), Bn=b(no+1)+…+b(no+n) => M>0 такое что Bnn An<=Bn<=M => (k=no+1..)ak сх-ся =>(k=1..)ak сход {Предельный признак сравнения}Если сущ предел lim(n) an/bn =k то; 1).0<=k<+ из сход bn следует сходимость an; 2).0 из расх bn следует расходимость an {док-во} если 0<=к<+ => =1 no такое что при n>no an/bn =k+1 => an<(n+1)bn n>no => из сх bn следует сходимость an => aк сходится 0<к<=+ =к/2 (к<+) и =1 к=+ no такое что при n>no an/bn>k/2 (k<+) an/bn>1; k=+ => при n>no аn>(k/2)bn (k<+) => из расход bn =>аn расх =>ак а>bn (k=+) Утв.

#17{Признак Даламбера не предельный(пр Тейлора)} an an>0 n=1,2,3… Если а(n+1)/an <=q<1 (n=1,2,3…) => ряд сход если q>=1 ряд расх {Док-во} аn= a1*a2/a1*a3/a2…an/a(n-1)<=a1q…q=a1qn-1 q<1 т.к. (n=1,+)qn-1 cх-ся как бесконечная => (n=1,+)аn cх-ся Пусть а(n+1)/an >=1 => а(n+1)>=an>=…>=a1>=0 lim(n)an0 =>ряд расход {Признак Дплмбера предельный} Пусть существует предел: limn+an+1/an=k; 1)k<1 ряд сх; 2)k>1 ряд расх. {Док-во} k<1 >0 |k+<1 n0 | n>n0 an+1/an{=q}<1 (k=n0+1,+)ak –сх-ся n=1+an сх-ся. Пусть k>1; k<+ >0 | k->1 n0 | при n>n0 an+1/an>k->1 n=1+an расход { Радик Признак Коши} пусть дан ряд an>0 кор n-ой степ(аn)<=q<1 ряд сх-ся если кор n-ой степ(аn)>1 ряд расход {cледствие} пусть lim(кор n-ой степ(аn))=k; k<1 – ряд сх к>1 – ряд расход

#18 {O} Знакопеременными рядами называют n=1+(-1)n-1an, an>0{Т Лейбница} пусть дан знакоперем ряд (-1)n-1 сn cn>0; 1)C(n+1)<=C(n) n=1,2,3; 2)Lim(n)(Cn)=0 то ряд сход {Док-во} рассм частичные суммы ряда c чётными номерами S2k можно представить в виде: S2k=(c1-c2)+(c3-c4)+…+(c(2k-1)-c(2k)) Т.к. каждая из скобок положительна то данная частичная сумма образует возрастающую последовательность по усл теоремы S2k=c1-(c2-c3)-…-(c(2n-2)-c(2n-1))-c2nlim(n)(S2n)=S Рассм теперь сумму с нечётными номерами S2k+1=S2k+C2k+1 т к limC2k+1 = 0 => lim(k)S2k+1=lim(k)S2k=S; Из вышесказанного следует lim(n)Sn=lim(n)S2k = lim(k)S2k+1=S {Док-ть самим}

{Оценка остатка ряда} При выполнении Т Лейбница знак остатка ряда совпад со знаком своего 1-го члена и не превосходит его по модулю

#19 Ряд n=1an –наз абс сход если сход ряд |an|. Если an – cх а |an| - расх то такой ряд наз усл сх. {Теорема о связи между сх абс и об} Если ряд абсолютно сходится то он и просто сходится {Док} Пусть ряд n=1+an -абс сх n=1+|аn| -сх-ся по критерию Коши >0 n| при n>n и pZ p>=0 вып-ся нер-во: |an+an+1+…+an+p|<=|an|+…+|an+p|< по критерию Коши n=1+an-сх-ся.{Св-ва абс сх рядов} {Т1} Если n=1+an –абс сход, то ряд полученный из него произвольной перестановкой членов также абс сх и имеет тужу сумму. {Т2} Если ряды n=1+an и n=1+bn абс сх то ряд сост из возм попарн произведений aibi взятых в произвольном порядке также абсолютно сход и сумма его = произведению сумм рядов an и bn {Признаки Даламбера и Каши для рядов с произвольными членами} При исследовании ряда n=1+an на абс сход к ряду из модулей его членов могут быть применены все признаки сходимости для знакоположительных рядов. {Т1}|an-1|/|an| ; limn+|an-1|/|an|=k; при k<1 ряд еn=1+Ґan- сход при k<1 ряд еn=1+Ґan-сх при k>1 ряд еn=1+Ґan- расх {Т2} Если для посл-ности еn|an|; k=limn+ n|an|; при k<1 ряд еn=1+Ґan-сх при k>1 ряд еn=1+Ґan- расх.

#20{Ряды с комплексными членами} {О} Посл-ность zn=xn+iyn, n=1,2… имеет своим пределом число z0=x0+y0 Если для >0 n | при n>n вып |zn-z0|< ; Для того чтобы посл-ность zn=xn+iyn сход необходимо и достаточно чтобы последовательность хn сход х0 и посл. yn сход у0. {Док-во} Пусть z0=limnzn >0 n | при n>n =|zn-z0|< Т.к. |zn-z0|=((xn-x0)+(yn-y0)) |zn-z0|>=|xn-x0| и |zn-zo|>= |yn-y0| при n>n вып. нер-во |xn-x0|<=|zn-z0|< ; |yn-y0|<=|zn-z0|< по опр. limnXn=x0 а limnyn=y0 {}Пусьт дана пос-ность компл. чисел {Zn}. Если существует предел последовательности его частичных сумм в этом случае этот предел называют суммой ряда. В проти вном сл ряд расх. {Т} Для того чтобы ряд zn=xn+iyn сходился и имел своей суммой число s=+i Необх. и достаточно чтобы сход ряды (n=1,+)xn и (n=1,+)уn и имели своими суммами числа и - соответственно Sn=(k=1,n)xk+i(k=1,n)yk и если ряд (n=1,+)zn –сх то limn+zn=0 {Д} Пусть zn=xn+iyn т.к. (n=1,+)zn –сх (n=1,+)xn сх и (n=1,+)уn –сх limn+xn=limn+yn=0 limn+zn=limn+xn+ilimn+yn=0 чтд. {О} Ряд zn назыв абс сход если сход ряд мод zn если сход ряд zn а ряд |zn| расход то усл. сход. {Т} Абсолютно сходящийся ряд сходится.{Д} Пусть (n=1,+)zn –абс сход (n=1,+)|zn| -сх Т.к. |xn|<=(xn+yn)=|zn|, |yn|<=|zn| (zn=xn+iyn) по признаку сравнения (n=1,+)|xn| -cх и (n=1,+)|yn| -сх (n=1,+)xn –сх и (n=1,+)уn-сх (n=1,+)zn –cх {Т} Для того чтобы ряд абс сходился (zn=xn+iyn) необходимо и достаточно, чтобы ряды xn и yn – абс сход {Д} Пусть (n=1,+)|xn| и (n=1,+)|уn| сх |zn=(xn+yn)<= (yn+2|xn||yn|+yn) <= (|xn|+|yn|)=|xn|+|yn| то по признаку сравнения (n=1,+)|zn| - cх-ся.


#21{Производная диф…} {O} Производной f(x) в т. х0- называется предел отношение приращения ф-ции к соответсвующему приращению аргумента, когда последние 0; f'(x0)=limx0(f(x0+x)-f(x0))/x {O} A=const Вырожение Ах –назыв. дифференциалом ф-ции f в т. х0 и обозначают dy или df(x); Приращение х обозначают dx и называют дефференциалом независимой переменной т.о. dy=Adx {Т} Если у ф-ции f(x) в (.) x0 существут производная то ф-ция непрерывна в (.) х0 {Док-во} Пусть y=f(x0+x)-f(x0) т.к. limx0y/x=f’(x0) y/x=f’(x0)+(x), где (x) 0 при х0 y=f’(x0)x+(x), где (х)0 при х0 y=f’(x0)x+(x)x limx0y=0 в f(x)-непрерывно в т.х0 {O}y=f(x)-определённая в U(x0) в т.х0 называется дифференцируемой при х=х0 исли её приращение у=f(x0+x)-f(x0), x0+xU(x0) можно представить в виде у=Ах+о(х), х0{Т} Для того, чтобы ф-ция y=f(x) была дифференцируема, необходимо и достаточно чтобы она в этой точке имела дифференциал. {Док-во} Пусть y=f(x) диффер-ма в х0 y =f(x0+x)-f(x0)= Ax+o(x), x0; limx0y/x= limx0(A+o(x)/x)=A; т.о. в т. х0 f’(x0)=limx0y/x=A {Обратно} Пусть ф-ция y=f(x) имеет в т. х0 f’(x0)=limx0y/xy/x=f’(x0)+(x), limx0(x)=0 y=f’(x0)x +(x)x y=f’(x0)x+o(x), x0 ф-ция f- дифференцируема в т. х0

22 {Геометрический смысл произ} Пусть ф-ция y=f(x)- определена и непрерывна на (a;b) x0, x0+x(a,b), y0=f(x0), y0+y=f(x0+x) M0(x0,y0) M(x0+x,y0+y){картинка} проведём секущую MM0 её ур-ние имеет вид y=y0+k(x)(x-x0), k(x)=y/x; Всилу непрерывности y=f(x) в т.(х0) у0 при х0 |M0M|=(x+y)0 при х0 В этом случае говорят что MM0 {О} Если limx0k(x)=k0 то прямая уравнение которой y=y0+k(x)(x-x0) получается из ур-ния k(x)=y/x при х0 называется наклонной касательной к графику ф-ции у=f(x) в (.) (х0,у0) Т.к. k(x)=y/x, то k0=limx0k(x)= limx0y/x=f’(x0) уравнение касательной имеет вид y=y0+f’(x0)(x-x0) ; f’(x0)=tg; причём y=y0+k0(x-x0) –называется предельным положением; y=y0+k(x)(x-x0) касательная есть предельное положение секущей при M0M т.к. f’(x0)(x-x0)=dy то dy=y-y0 где у-текущая ордината касательной. Т.е. дифференциал ф-ции в (.) х0 есть приращение ординаты касательной.{Уравнение нормали.} Нормалью к графику ф-ции y=f(x) в (.) (х0,у0) называется прямая роходящая через эту точку перпендикулярно касат к графикуэтй ф-ции. Его можно написать, зная точку, через которую она проходит и угловой коэффициент k=-1/f’(x0) ; y-f(x0)=-1(x-x0)/f’(x0) x и y – точки на нормали

#23 Пусть ф-ции U(x) и V(x) –дифференцируемы в (.) х тогда d(U+(-)V)=(U+(-)V)’dx=(U’+(-)V’)dx=U’dx+(-)V’dx=dU+(-)dV; 2)d(UV)=(UV)’dx=(U’V+V’U)dx=U’Xdx+V’Udx=Vdu+Udv; 3)d(U/V)=(U/V)'dx=(U'V+v'U)dx/V=(U'Vdx-V’Udx)/V=(Vdu-Udv)/V

24 {Производная от сложной ф-ии.} Dh: Пусть: z=f(y) - дифф. в точке y0 ; y=(x)  дифф. в точке х0 .   y0=(x0) тогда сложная ф-ия z=f((x))- дифф. в точке х0 и справедлива формула: z’x=z’yy’x=f’(y)’(x) ; dz/dx=dz/dy dy/dx {Док}Т.к. z=f(y) - дифф. в точке y0 z=f’(y0)y+(y); Т.к. y=(x)- дифф. в точке х0 y=’(x0)x+(x); z=f’(y0)’(x0)x+f’(y0)(x)+(y); Т.к y=(x) - дифф. в точке х0 а значит непрерывна в этой точке (x0y0). (x)=f’(x0)(x)+(y); limx0/x; limx0(x)/x= limx0[f’(x0)(x)/x+(y)/x]= limx0(y)/x= limx0(y)/y limx0y/x=’(x0); (f((x)))=(f’(y0)’(x0))x+(x), где limx0(x)/x=0 (f((x)))’x=z’x=f’(y0)’(x0)

#25 {Производная от обратной ф-ии.} Пусть y=f(x) в точке х0 имеет: 1) f’(x)0, 2) на промежутке, содержащем х0, обратную ф-цию y=f-1(x)=(y) 3) y0=f(x0); тогда в (.) х0 существует f’()0, равная '(y0)=1/f’(x0). {Док-во} Пусть x=(y) и двум различным значениям х соответсвует е различных значений у. xx0yy0x0 y0 y/x=1/y/x ; Пусть y=f(x) дифф. в точке x0 тогда limx0y=0x0y0 f’(x0)=limx0y/x= limy01/y/x=1/limy0x/y=1/’(y0) ; f’(x0)0’(y0)=1/f’(x0)

#26 {Логарифмическая производная} y=[u(x)]v(x),u(x)>0; lny=v(x)lnu(x); y'/y=v’(x)lnu(x)+v(x)u’(x)/u(x); y’=uv(v’lnu+vu’/u); (lny)’=y’/y-логарифмическая производная ф-ции {Производные основных элементарных ф-ций} 1) y=Const y=c-c=0limx0y/x(C)’=0 ; 2) y=sinx y’=cosx 3)(cosx)’=-sinx 4) (ax)’=axlna 5)(arcsinx)’=1/1-x 6)(arccosx)’=-1/(1-x) 7) (arctgx)’=1/(1+x) 8) (arcctgx)’=-1/(1+x) 9) (lnx)’=1/x ; 10) (x)’=x-1

#27 {Производные и дифференциалы выс. порядков}{О} Пусть y=f(x); f(n)(x)=(f(n-1)(x))’ т.о. если говорят что у ф-ции y=f(x) в (.) существует производная n-ого порядка то это означает, что в некоторой окресности (.) х0 определено произведение n-1 –ого порядка, которая сама имеет производную в (.) х0 f(n-1)(x0) Эта последняя производная и наз. n-ого порядка от ф-ции f {}Дифференциал n-ого порядка} {О} dnf(x)=d(dn-1f(x)) При взятии дифференциала следует учитывать, что величина dx есть произвольное не зависящее от х число которое надо рассматривать как постоянный множитель при взятии производной dy=d(dy)=d(f’(x)dx)=df’(x)dx=f’’(x)dx; dny=f(n)(x)dxn ;f(n)=dny/dxn ) uv(n) = u(n)v + Cn1 u(n-1)v' +Cn2 u(n-2)v'' + … +C1n u(n-k)v(k) + uv(n) =k=0nCkn u(n-k)v(k),(формула Лейбница), Где Cnk =n!/k!(n-k)! , 0! = 1, v(0) = v. (u + v)(n) = k=0nCkn u(n-k)v(k) - бином Ньютона. формула Лейбница доказывается по индукции.

#28 {Параметрическое дифференцирование} Пусть x=x(t), y=y(t) определены в окрестности t0 t=t(x) x0=x(t0) Определена сложная ф-ция Ф(х)=у(t(x)) которая называется параметрически заданным уравнением. Предположим что x(t) и g(t) имеют производные в т. х0 тогда ф-ции Ф(х)=у(t(x)) также имеют производную в (.) х0 и она равна Ф’(x)=y’t(t0)/x’t(t0) Действительно по правилу дифференцирования сложной ф-ции Ф’(x0)=y’t(t0)t’x(x0); t’x(x0)=1/x’t(t0) Ф(э(х0)=y’t(t0)/x’t(t0) x’(t0)0 Если ф-ция x(t) и

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: